Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea.
Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Republic of Korea.
Nanoscale. 2021 Oct 28;13(41):17638-17647. doi: 10.1039/d1nr03495b.
Phase separation of biomolecules plays key roles in physiological compartmentalization as well as pathological aggregation. A deeper understanding of biomolecular phase separation requires dissection of a relation between intermolecular interactions and resulting phase behaviors. DNA nanostars, multivalent DNA assemblies of which sticky ends define attractive interactions, represent an ideal system to probe this fundamental relation governing phase separation processes. Here, we use DNA nanostars to systematically study how structural flexibility exhibited by interacting species impacts their phase behaviors. We design multiple nanostars with a varying degree of flexibility using single-stranded gaps of different lengths in the arm of each nanostar unit. We find that structural flexibility drastically alters the phase diagram of DNA nanostars in such a way that the phase separation of more flexible structures is strongly inhibited. This result is not due to self-inhibition from the loss of valency but rather ascribed to a generic flexibility-driven change in the thermodynamics of the system. Our work provides not only potential regulatory mechanisms cells may exploit to dynamically control intracellular phase separation but also a route to build synthetic systems of which assembly can be controlled in a signal dependent manner.
生物分子的相分离在生理区室化以及病理聚集中起着关键作用。要更深入地了解生物分子相分离,就需要剖析分子间相互作用与所产生的相行为之间的关系。DNA 纳米星是粘性末端定义吸引相互作用的多价 DNA 组装体,是探究控制相分离过程的基本关系的理想体系。在这里,我们使用 DNA 纳米星系统地研究了相互作用的物质所表现出的结构灵活性如何影响它们的相行为。我们设计了多个纳米星,每个纳米星单元的臂中使用不同长度的单链缺口来改变其结构的灵活性。我们发现结构的灵活性极大地改变了 DNA 纳米星的相图,使得更灵活的结构的相分离受到强烈抑制。这一结果不是由于失去价数而导致的自抑制,而是归因于系统热力学中普遍存在的灵活性驱动的变化。我们的工作不仅为细胞可能利用的动态控制细胞内相分离的潜在调控机制提供了理论依据,而且还为构建可以以信号依赖的方式控制组装的合成系统提供了一种途径。