Suppr超能文献

先天性心脏病主动脉生长的纵向统计图谱模型研究的可行性。

Feasibility of a longitudinal statistical atlas model to study aortic growth in congenital heart disease.

机构信息

Bristol Medical School, Faculty of Life Sciences, University of Bristol, Bristol, UK.

ARAMIS Lab, ICM, Inserm U1127, CNRS UMR 7225, Sorbonne University, Inria, Paris, France.

出版信息

Comput Biol Med. 2022 May;144:105326. doi: 10.1016/j.compbiomed.2022.105326. Epub 2022 Feb 28.

Abstract

Studying anatomical shape progression over time is of utmost importance to refine our understanding of clinically relevant processes. These include vascular remodeling, such as aortic dilation, which is particularly important in some congenital heart defects (CHD). A novel methodological framework for three-dimensional shape analysis has been applied for the first time in a CHD scenario, i.e., bicuspid aortic valve (BAV) disease, the most common CHD. Three-dimensional aortic shapes (n = 94) reconstructed from cardiovascular magnetic resonance imaging (MRI) data as surface meshes represented the input for a longitudinal atlas model, using multiple scans over time (n = 2-4 per patient). This model relies on diffeomorphism transformations in the absence of point-to-point correspondence, and on the right combination of initialization, estimation and registration parameters. We computed the shape trajectory of an average disease progression in our cohort, as well as time-dependent parameters, geometric variations and the average shape of the population. Results cover a spatiotemporal spectrum of visual and numerical information that can be further used to run clinical associations. This proof-of-concept study demonstrates the feasibility of applying advanced statistical shape models to track disease progression and stratify patients with CHD.

摘要

研究解剖形状随时间的演变对于深化我们对临床相关过程的理解至关重要。这些过程包括血管重塑,如主动脉扩张,这在某些先天性心脏病(CHD)中尤为重要。一种新的三维形状分析方法框架首次应用于 CHD 情况,即二叶式主动脉瓣(BAV)疾病,这是最常见的 CHD。使用时间上的多次扫描(每个患者 2-4 次),将心血管磁共振成像(MRI)数据重建为表面网格的三维主动脉形状(n=94)作为输入,用于纵向图谱模型。该模型依赖于无点对点对应关系的微分同胚变换,以及初始化、估计和注册参数的正确组合。我们计算了我们队列中疾病进展的平均轨迹,以及时变参数、几何变化和群体的平均形状。结果涵盖了视觉和数值信息的时空谱,可以进一步用于进行临床关联。这项概念验证研究证明了应用先进的统计形状模型来跟踪 CHD 患者疾病进展和分层的可行性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验