Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, FL, USA.
Diabetes Research Institute & Cell Transplantation Center, University of Miami, Miller School of Medicine, Miami, FL, USA.
Sci Rep. 2022 Mar 4;12(1):3609. doi: 10.1038/s41598-022-07569-7.
Within the human knee infrapatellar fat pad (IFP) and synovium, resident synoviocytes and macrophages contribute to the onset and progression of inflammatory joint diseases. Our hypothesis is that IFP-derived mesenchymal stem cells (IFP-MSC) robust immunomodulatory therapeutic effects are largely exerted via their exosomal (IFP-MSC EXOs) secretome by attenuating synoviocytes and macrophages pro-inflammatory activation. IFP-MSC EXOs showed distinct miRNA and protein immunomodulatory profiles. Reactome analysis of 24 miRNAs highly present in exosomes showed their involvement in the regulation of six gene groups, including immune system. Exosomes were enriched for immunomodulatory and reparative proteins that are involved in positive regulation of cell proliferation, response to stimulus, signal transduction, signal receptor activity, and protein phosphorylation. Stimulated synoviocytes or macrophages exposed to IFP-MSC EXOs demonstrated significantly reduced proliferation, altered inflammation-related molecular profiles, and reduced secretion of pro-inflammatory molecules compared to stimulated alone. In an acute synovial/IFP inflammation rat model, IFP-MSC EXOs therapeutic treatment resulted in robust macrophage polarization towards an anti-inflammatory therapeutic M2 phenotype within the synovium/IFP tissues. Based on these findings, we propose a viable cell-free alternative to MSC-based therapeutics as an alternative approach to treating synovitis and IFP fibrosis.
在人类膝关节髌下脂肪垫 (IFP) 和滑膜中,固有滑膜细胞和巨噬细胞有助于炎症性关节疾病的发生和进展。我们的假设是,IFP 来源的间充质干细胞 (IFP-MSC) 通过减弱滑膜细胞和巨噬细胞的促炎激活,发挥其强大的免疫调节治疗作用,主要是通过其外泌体 (IFP-MSC EXO) 分泌组。IFP-MSC EXO 显示出独特的 miRNA 和蛋白质免疫调节谱。24 种高度存在于外泌体中的 miRNA 的反应组分析表明,它们参与了六个基因群的调节,包括免疫系统。外泌体富含参与细胞增殖、对刺激的反应、信号转导、信号受体活性和蛋白质磷酸化的正调节的免疫调节和修复蛋白。与单独刺激相比,暴露于 IFP-MSC EXO 的刺激滑膜细胞或巨噬细胞显示出明显降低的增殖、改变的与炎症相关的分子谱以及促炎分子分泌减少。在急性滑膜/IFP 炎症大鼠模型中,IFP-MSC EXO 治疗治疗导致滑膜/IFP 组织中巨噬细胞向抗炎治疗 M2 表型的强烈极化。基于这些发现,我们提出了一种可行的无细胞替代 MSC 基治疗方法,作为治疗滑膜炎和 IFP 纤维化的替代方法。