Suppr超能文献

智能农业中的少样本学习综述:进展、应用与挑战

A survey of few-shot learning in smart agriculture: developments, applications, and challenges.

作者信息

Yang Jiachen, Guo Xiaolan, Li Yang, Marinello Francesco, Ercisli Sezai, Zhang Zhuo

机构信息

School of Electrical and Information Engineering, Tianjin University, Tianjin, China.

College of Mechanical and Electrical Engineering, Shihezi University, Xinjiang, China.

出版信息

Plant Methods. 2022 Mar 5;18(1):28. doi: 10.1186/s13007-022-00866-2.

Abstract

With the rise of artificial intelligence, deep learning is gradually applied to the field of agriculture and plant science. However, the excellent performance of deep learning needs to be established on massive numbers of samples. In the field of plant science and biology, it is not easy to obtain a large amount of labeled data. The emergence of few-shot learning solves this problem. It imitates the ability of humans' rapid learning and can learn a new task with only a small number of labeled samples, which greatly reduces the time cost and financial resources. At present, the advanced few-shot learning methods are mainly divided into four categories based on: data augmentation, metric learning, external memory, and parameter optimization, solving the over-fitting problem from different viewpoints. This review comprehensively expounds on few-shot learning in smart agriculture, introduces the definition of few-shot learning, four kinds of learning methods, the publicly available datasets for few-shot learning, various applications in smart agriculture, and the challenges in smart agriculture in future development.

摘要

随着人工智能的兴起,深度学习逐渐应用于农业和植物科学领域。然而,深度学习的卓越性能需要建立在大量样本的基础上。在植物科学和生物学领域,获取大量标注数据并非易事。少样本学习的出现解决了这个问题。它模仿人类快速学习的能力,仅需少量标注样本就能学习一项新任务,这大大降低了时间成本和资金资源。目前,先进的少样本学习方法主要基于数据增强、度量学习、外部记忆和参数优化分为四类,从不同角度解决过拟合问题。本文综述全面阐述了智能农业中的少样本学习,介绍了少样本学习的定义、四种学习方法、少样本学习的公开可用数据集、在智能农业中的各种应用以及未来发展中智能农业面临的挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/494c/8897954/9f50775f6d07/13007_2022_866_Fig1_HTML.jpg

相似文献

1
A survey of few-shot learning in smart agriculture: developments, applications, and challenges.
Plant Methods. 2022 Mar 5;18(1):28. doi: 10.1186/s13007-022-00866-2.
2
Learning with few samples in deep learning for image classification, a mini-review.
Front Comput Neurosci. 2023 Jan 5;16:1075294. doi: 10.3389/fncom.2022.1075294. eCollection 2022.
3
Few-shot learning based on deep learning: A survey.
Math Biosci Eng. 2024 Jan;21(1):679-711. doi: 10.3934/mbe.2024029. Epub 2022 Dec 19.
4
Zero-Shot Image Classification Based on a Learnable Deep Metric.
Sensors (Basel). 2021 May 7;21(9):3241. doi: 10.3390/s21093241.
5
How to Trust Unlabeled Data? Instance Credibility Inference for Few-Shot Learning.
IEEE Trans Pattern Anal Mach Intell. 2022 Oct;44(10):6240-6253. doi: 10.1109/TPAMI.2021.3086140. Epub 2022 Sep 14.
6
Automated human cell classification in sparse datasets using few-shot learning.
Sci Rep. 2022 Feb 21;12(1):2924. doi: 10.1038/s41598-022-06718-2.
7
Few-Shot Rolling Bearing Fault Diagnosis with Metric-Based Meta Learning.
Sensors (Basel). 2020 Nov 11;20(22):6437. doi: 10.3390/s20226437.
9
Few-Shot Learning With Enhancements to Data Augmentation and Feature Extraction.
IEEE Trans Neural Netw Learn Syst. 2025 Apr;36(4):6655-6668. doi: 10.1109/TNNLS.2024.3400592. Epub 2025 Apr 4.
10
Meta-Prototypical Learning for Domain-Agnostic Few-Shot Recognition.
IEEE Trans Neural Netw Learn Syst. 2022 Nov;33(11):6990-6996. doi: 10.1109/TNNLS.2021.3083650. Epub 2022 Oct 27.

引用本文的文献

1
Few-shot crop disease recognition using sequence- weighted ensemble model-agnostic meta-learning.
Front Plant Sci. 2025 Aug 6;16:1615873. doi: 10.3389/fpls.2025.1615873. eCollection 2025.
2
Few-shot object detection for pest insects via features aggregation and contrastive learning.
Front Plant Sci. 2025 Jun 19;16:1522510. doi: 10.3389/fpls.2025.1522510. eCollection 2025.
3
Multi-kernel inception aggregation diffusion network for tomato disease detection.
BMC Plant Biol. 2024 Nov 13;24(1):1069. doi: 10.1186/s12870-024-05797-9.
5
Phenotyping of Drought-Stressed Poplar Saplings Using Exemplar-Based Data Generation and Leaf-Level Structural Analysis.
Plant Phenomics. 2024 Jul 29;6:0205. doi: 10.34133/plantphenomics.0205. eCollection 2024.
6
A few-shot learning method for tobacco abnormality identification.
Front Plant Sci. 2024 Mar 28;15:1333236. doi: 10.3389/fpls.2024.1333236. eCollection 2024.
9
A Multi-Layer Feature Fusion Method for Few-Shot Image Classification.
Sensors (Basel). 2023 Aug 3;23(15):6880. doi: 10.3390/s23156880.
10
Few-Shot Learning Enables Population-Scale Analysis of Leaf Traits in .
Plant Phenomics. 2023 Jul 28;5:0072. doi: 10.34133/plantphenomics.0072. eCollection 2023.

本文引用的文献

1
Distance-Entropy: An Effective Indicator for Selecting Informative Data.
Front Plant Sci. 2022 Jan 13;12:818895. doi: 10.3389/fpls.2021.818895. eCollection 2021.
2
A novel deep learning-based method for detection of weeds in vegetables.
Pest Manag Sci. 2022 May;78(5):1861-1869. doi: 10.1002/ps.6804. Epub 2022 Feb 2.
3
Toward Sustainability: Trade-Off Between Data Quality and Quantity in Crop Pest Recognition.
Front Plant Sci. 2021 Dec 24;12:811241. doi: 10.3389/fpls.2021.811241. eCollection 2021.
4
Few-shot cotton leaf spots disease classification based on metric learning.
Plant Methods. 2021 Nov 8;17(1):114. doi: 10.1186/s13007-021-00813-7.
5
Semi-supervised few-shot learning approach for plant diseases recognition.
Plant Methods. 2021 Jun 27;17(1):68. doi: 10.1186/s13007-021-00770-1.
6
No Reference Quality Assessment for Screen Content Images Using Stacked Autoencoders in Pictorial and Textual Regions.
IEEE Trans Cybern. 2022 May;52(5):2798-2810. doi: 10.1109/TCYB.2020.3024627. Epub 2022 May 19.
7
Meta Networks.
Proc Mach Learn Res. 2017 Aug;70:2554-2563.
9
Deep phenotyping: deep learning for temporal phenotype/genotype classification.
Plant Methods. 2018 Aug 4;14:66. doi: 10.1186/s13007-018-0333-4. eCollection 2018.
10
Human-level concept learning through probabilistic program induction.
Science. 2015 Dec 11;350(6266):1332-8. doi: 10.1126/science.aab3050.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验