Suppr超能文献

采用液相色谱-质谱联用法鉴定脑脊液代谢产物作为神经型布鲁氏菌病的生物标志物。

Identification of cerebrospinal fluid metabolites as biomarkers for neurobrucellosis by liquid chromatography-mass spectrometry approach.

机构信息

Department of Radiation Oncology, Inner Mongolia Cancer Hospital & Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot, China.

Department of Neurology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China.

出版信息

Bioengineered. 2022 Mar;13(3):6996-7010. doi: 10.1080/21655979.2022.2037954.

Abstract

Neurobrucellosis is the most morbid form in brucellosis disease. Metabolomics is an emerging method which intends to explore the global alterations of various metabolites in samples. We aimed to identify metabolites in cerebrospinal fluid (CSF) as biomarkers that were potentially unique for neurobrucellosis. CSF samples from 25 neurobrucellosis patients and 25 normal controls (uninfected patients with hydrocephalus) were collected for metabolite detection using liquid chromatography-mass spectrometry (LC-MS) approach. Inflammatory cytokines in CSF were measured with Enzyme-linked immunosorbent assay (ELISA). The base peak chromatogram in CSF samples showed that small-molecule metabolites were well separated. Principal Component Analysis (PCA) analysis exhibited the examined samples were arranged in two main clusters in accordance with their group. Projection to Latent Structures Discriminant Analysis (PLS-DA) revealed there was a noticeable separation between neurobrucellosis and normal groups. Orthogonal Partial Least-Squares-Discriminant Analysis (OPLS-DA) could responsibly illuminate the differences between neurobrucellosis and normal controls. Neurobrucellosis showed a total of 155 differentiated metabolites. Prominent potential biomarkers including 30 metabolites were then selected out, regarded as more capable of distinguishing neurobrucellosis. TNF-α and IL-6 in CSF were remarkably increased in neurobrucellosis. We presented the heatmaps and correlation analyses among the identified 30 potential biomarkers. In conclusion, this study showed that CSF metabolomics based on LC-MS could distinguish neurobrucellosis patients from normal controls. Our data offered perspectives for diagnosis and treatment for neurobrucellosis.

摘要

神经型布氏杆菌病是布氏杆菌病中最严重的形式。代谢组学是一种新兴的方法,旨在探索样本中各种代谢物的全局变化。我们旨在确定脑脊液 (CSF) 中的代谢物作为神经型布氏杆菌病潜在独特的生物标志物。使用液相色谱-质谱 (LC-MS) 方法收集了 25 例神经型布氏杆菌病患者和 25 例正常对照者(无感染性脑积水患者)的 CSF 样本进行代谢物检测。采用酶联免疫吸附试验 (ELISA) 检测 CSF 中的炎症细胞因子。CSF 样本的基峰色谱图表明小分子代谢物得到了很好的分离。主成分分析 (PCA) 分析表明,根据其组,检查的样本排列在两个主要聚类中。偏最小二乘判别分析 (PLS-DA) 显示神经型布氏杆菌病和正常组之间存在明显的分离。正交偏最小二乘判别分析 (OPLS-DA) 可以负责任地说明神经型布氏杆菌病和正常对照组之间的差异。神经型布氏杆菌病共显示出 155 种差异代谢物。然后选择出 30 种明显的潜在生物标志物,认为它们更能区分神经型布氏杆菌病。CSF 中的 TNF-α 和 IL-6 在神经型布氏杆菌病中明显增加。我们展示了鉴定出的 30 种潜在生物标志物之间的热图和相关性分析。总之,这项研究表明,基于 LC-MS 的 CSF 代谢组学可以区分神经型布氏杆菌病患者和正常对照者。我们的数据为神经型布氏杆菌病的诊断和治疗提供了新视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb9b/8974019/0e339b9793f8/KBIE_A_2037954_UF0001_OC.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验