Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
World J Surg Oncol. 2022 Mar 6;20(1):71. doi: 10.1186/s12957-022-02508-2.
An increasing number of studies have shown that immune-related long noncoding RNAs (lncRNAs) do not require a unique expression level. This finding may help predict the survival and drug sensitivity of patients with colon cancer.
We retrieved original transcriptome and clinical data from The Cancer Genome Atlas (TCGA), sorted the data, differentiated mRNAs and lncRNAs, and then downloaded immune-related genes. Coexpression analysis predicted immune-related lncRNAs (irlncRNAs) and univariate analysis identified differentially expressed irlncRNAs (DEirlncRNAs). We have also amended the lasso pending region. Next, we compared the areas under the curve (AUCs), counted the Akaike information standard (AIC) value of the 3-year receiver operating characteristic (ROC) curve, and determined the cutoff point to establish the best model to differentiate the high or low disease risk group of colon cancer patients.
We reevaluated the patients regarding the survival rate, clinicopathological features, tumor-infiltrating immune cells, immunosuppressive biomarkers, and chemosensitivity. A total of 155 irlncRNA pairs were confirmed, 31 of which were involved in the Cox regression model. After the colon cancer patients were regrouped according to the cutoff point, we could better distinguish the patients based on adverse survival outcomes, invasive clinicopathological features, the specific tumor immune cell infiltration status, high expression of immunosuppressive biomarkers, and low chemosensitivity.
In this study, we established a characteristic model by pairing irlncRNAs to better predict the survival rate, chemotherapy efficacy, and prognostic value of patients with colon cancer.
越来越多的研究表明,免疫相关长非编码 RNA(lncRNA)不需要独特的表达水平。这一发现可能有助于预测结肠癌患者的生存和药物敏感性。
我们从癌症基因组图谱(TCGA)中检索了原始转录组和临床数据,对数据进行排序,区分 mRNA 和 lncRNA,然后下载免疫相关基因。共表达分析预测免疫相关 lncRNA(irlncRNA),单变量分析鉴定差异表达的 irlncRNA(DEirlncRNA)。我们还修正了lasso 待选区域。接下来,我们比较了曲线下面积(AUC),计算了 3 年接收者操作特征(ROC)曲线的赤池信息量准则(AIC)值,并确定了截断点,以建立最佳模型来区分结肠癌患者的高或低疾病风险组。
我们重新评估了患者的生存率、临床病理特征、肿瘤浸润免疫细胞、免疫抑制生物标志物和化疗敏感性。共确认了 155 对 irlncRNA 对,其中 31 对参与 Cox 回归模型。根据截断点对结肠癌患者进行重新分组后,我们可以根据不良生存结果、侵袭性临床病理特征、特定肿瘤免疫细胞浸润状态、免疫抑制生物标志物的高表达和化疗敏感性的降低,更好地区分患者。
在这项研究中,我们建立了一个特征模型,通过配对 irlncRNA 来更好地预测结肠癌患者的生存率、化疗疗效和预后价值。