Alkhalifah Mohammed A, Howchen Benjamin, Staddon Joseph, Celorrio Veronica, Tiwari Devendra, Fermin David J
School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, United Kingdom.
Diamond Light Source Ltd., Diamond House, Harwell Campus, Didcot OX11 0DE, United Kingdom.
J Am Chem Soc. 2022 Mar 16;144(10):4439-4447. doi: 10.1021/jacs.1c11757. Epub 2022 Mar 7.
The atomistic rationalization of the activity of transition metal oxides toward oxygen electrocatalysis is one of the most complex challenges in the field of electrochemical energy conversion. Transition metal oxides exhibit a wide range of structural and electronic properties, which are acutely dependent on composition and crystal structure. So far, identifying one or several properties of transition metal oxides as descriptors for oxygen electrocatalysis remains elusive. In this work, we performed a detailed experimental and computational study of LaMnNiO perovskite nanostructures, establishing an unprecedented correlation between electrocatalytic activity and orbital composition. The composition and structure of the single-phase rhombohedral oxide nanostructures are characterized by a variety of techniques, including X-ray diffraction, X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, and electron microscopy. Systematic electrochemical analysis of pseudocapacitive responses in the potential region relevant to oxygen electrocatalysis shows the evolution of Mn and Ni d-orbitals as a function of the perovskite composition. We rationalize these observations on the basis of electronic structure calculations employing DFT with HSE06 hybrid functional. Our analysis clearly shows a linear correlation between the OER kinetics and the integrated density of states (DOS) associated with Ni and Mn 3d states in the energy range relevant to operational conditions. In contrast, the ORR kinetics exhibits a second-order reaction with respect to the electron density in Mn and Ni 3d states. For the first time, our study identifies the relevant DOS dominating both reactions and the importance of understanding orbital occupancy under operational conditions.
过渡金属氧化物对氧电催化活性的原子尺度合理化是电化学能量转换领域最复杂的挑战之一。过渡金属氧化物表现出广泛的结构和电子性质,这强烈依赖于组成和晶体结构。到目前为止,确定过渡金属氧化物的一种或几种性质作为氧电催化的描述符仍然难以实现。在这项工作中,我们对LaMnNiO钙钛矿纳米结构进行了详细的实验和计算研究,建立了电催化活性与轨道组成之间前所未有的相关性。单相菱面体氧化物纳米结构的组成和结构通过多种技术进行表征,包括X射线衍射、X射线吸收光谱、X射线光电子能谱和电子显微镜。对与氧电催化相关的电位区域中赝电容响应的系统电化学分析表明,Mn和Ni d轨道随钙钛矿组成的变化。我们基于采用HSE06混合泛函的DFT电子结构计算对这些观察结果进行了合理化。我们分析清楚地表明,在与操作条件相关的能量范围内,OER动力学与与Ni和Mn 3d态相关的态密度积分(DOS)之间存在线性相关性。相比之下,ORR动力学对Mn和Ni 3d态中的电子密度表现出二级反应。我们的研究首次确定了主导这两种反应的相关DOS以及理解操作条件下轨道占据的重要性。