Yang Liming, Yang Tao, Chen Yafeng, Zheng Yapeng, Wang Enhui, Du Zhentao, Chou Kuo-Chih, Hou Xinmei
Beijing Advanced Innovation Center for Materials Genome Engineering, Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China.
MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China.
Nanomaterials (Basel). 2022 Jul 31;12(15):2640. doi: 10.3390/nano12152640.
The development of bifunctional electrocatalysts with efficient oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is still a key challenge at the current stage. Herein, FeNi LDH/VCT/nickel foam (NF) self-supported bifunctional electrode was prepared via deposition of FeNi LDH on VCT/NF substrate by hydrothermal method. Strong interfacial interaction between VCT/NF and FeNi LDH effectively prevented the aggregation of FeNi LDH, thus exposing more catalytic active sites, which improved electrical conductivity of the nanohybrids and structural stability. The results indicated that the prepared FeNi LDH/VCT/NF required 222 mV and 151 mV overpotential for OER and HER in 1 M KOH to provide 10 mA cm, respectively. Besides, the FeNi LDH/VCT/NF electrocatalysts were applied to overall water splitting, which achieved a current density of 10 mA cm at 1.74 V. This work provides ideas for improving the electrocatalytic performance of electrocatalysts through simple synthesis strategies, structural adjustment, use of conductive substrates and formation of hierarchical structures.
目前,开发具有高效析氧反应(OER)和析氢反应(HER)的双功能电催化剂仍是一个关键挑战。在此,通过水热法在VCT/泡沫镍(NF)基底上沉积FeNi层状双氢氧化物(LDH)制备了FeNi LDH/VCT/泡沫镍自支撑双功能电极。VCT/泡沫镍与FeNi LDH之间的强界面相互作用有效地防止了FeNi LDH的聚集,从而暴露出更多的催化活性位点,提高了纳米杂化物的电导率和结构稳定性。结果表明,制备的FeNi LDH/VCT/泡沫镍在1 M KOH中进行OER和HER时,分别需要222 mV和151 mV的过电位来提供10 mA/cm²的电流密度。此外,FeNi LDH/VCT/泡沫镍电催化剂应用于全水解,在1.74 V时实现了10 mA/cm²的电流密度。这项工作为通过简单的合成策略、结构调整、使用导电基底和形成分级结构来提高电催化剂的电催化性能提供了思路。