Neurosciences PhD Program, Stanford University, Stanford, California 94305
Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305.
J Neurosci. 2023 Jun 21;43(25):4625-4641. doi: 10.1523/JNEUROSCI.1091-22.2023. Epub 2023 May 15.
Electrical stimulation of retinal ganglion cells (RGCs) with electronic implants provides rudimentary artificial vision to people blinded by retinal degeneration. However, current devices stimulate indiscriminately and therefore cannot reproduce the intricate neural code of the retina. Recent work has demonstrated more precise activation of RGCs using focal electrical stimulation with multielectrode arrays in the peripheral macaque retina, but it is unclear how effective this can be in the central retina, which is required for high-resolution vision. This work probes the neural code and effectiveness of focal epiretinal stimulation in the central macaque retina, using large-scale electrical recording and stimulation The functional organization, light response properties, and electrical properties of the major RGC types in the central retina were mostly similar to the peripheral retina, with some notable differences in density, kinetics, linearity, spiking statistics, and correlations. The major RGC types could be distinguished by their intrinsic electrical properties. Electrical stimulation targeting parasol cells revealed similar activation thresholds and reduced axon bundle activation in the central retina, but lower stimulation selectivity. Quantitative evaluation of the potential for image reconstruction from electrically evoked parasol cell signals revealed higher overall expected image quality in the central retina. An exploration of inadvertent midget cell activation suggested that it could contribute high spatial frequency noise to the visual signal carried by parasol cells. These results support the possibility of reproducing high-acuity visual signals in the central retina with an epiretinal implant. Artificial restoration of vision with retinal implants is a major treatment for blindness. However, present-day implants do not provide high-resolution visual perception, in part because they do not reproduce the natural neural code of the retina. Here, we demonstrate the level of visual signal reproduction that is possible with a future implant by examining how accurately responses to electrical stimulation of parasol retinal ganglion cells can convey visual signals. Although the precision of electrical stimulation in the central retina was diminished relative to the peripheral retina, the quality of expected visual signal reconstruction in parasol cells was greater. These findings suggest that visual signals could be restored with high fidelity in the central retina using a future retinal implant.
视网膜神经节细胞(RGCs)的电刺激通过电子植入物为因视网膜变性而失明的人提供了基本的人工视觉。然而,目前的设备不分青红皂白地刺激,因此无法再现视网膜复杂的神经编码。最近的工作表明,在外周猕猴视网膜中使用多电极阵列进行焦点电刺激可以更精确地激活 RGCs,但尚不清楚在需要高分辨率视觉的中央视网膜中,这种方法的效果如何。这项工作通过大规模电记录和刺激来探测中央猕猴视网膜中焦点视网膜上刺激的神经编码和有效性。中央视网膜的主要 RGC 类型的功能组织、光反应特性和电特性与外周视网膜大多相似,只是在密度、动力学、线性、尖峰统计和相关性方面存在一些明显差异。主要的 RGC 类型可以通过其内在的电特性来区分。针对伞细胞的电刺激靶向揭示了中央视网膜中类似的激活阈值和减少的轴突束激活,但刺激选择性较低。对电诱发伞细胞信号重建图像的潜力进行定量评估,结果表明中央视网膜的整体预期图像质量更高。对无意中激活小细胞的探索表明,它可能会对视神经信号中携带的伞细胞产生高空间频率噪声。这些结果支持了使用视网膜上植入物在中央视网膜中再现高清晰度视觉信号的可能性。视网膜植入物人工恢复视力是治疗失明的主要方法。然而,目前的植入物并不能提供高分辨率的视觉感知,部分原因是它们不能再现视网膜的自然神经编码。在这里,我们通过检查电刺激伞状视网膜神经节细胞对视觉信号的反应能够传达视觉信号的精确程度,来展示未来植入物可能实现的视觉信号再现水平。尽管中央视网膜的电刺激精度相对于外周视网膜有所降低,但在伞状细胞中预期视觉信号重建的质量更高。这些发现表明,使用未来的视网膜植入物可以在中央视网膜中以高保真度恢复视觉信号。