Suppr超能文献

基于镧系元素掺杂无铅双钙钛矿的紧凑型超宽带发光二极管

Compact ultrabroadband light-emitting diodes based on lanthanide-doped lead-free double perovskites.

作者信息

Jin Shilin, Li Renfu, Huang Hai, Jiang Naizhong, Lin Jidong, Wang Shaoxiong, Zheng Yuanhui, Chen Xueyuan, Chen Daqin

机构信息

College of Physics and Energy, Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fuzhou, 350117, China.

Fujian Science & Technology Innovation Laboratory for Optoelectronic Information, Fuzhou, 350116, China.

出版信息

Light Sci Appl. 2022 Mar 8;11(1):52. doi: 10.1038/s41377-022-00739-2.

Abstract

Impurity doping is an effective approach to tuning the optoelectronic performance of host materials by imparting extrinsic electronic channels. Herein, a family of lanthanide (Ln) ions was successfully incorporated into a Bi:CsAgInCl lead-free double-perovskite (DP) semiconductor, expanding the spectral range from visible (Vis) to near-infrared (NIR) and improving the photoluminescence quantum yield (PLQY). After multidoping with Nd, Yb, Er and Tm, Bi/Ln:CsAgInCl yielded an ultrabroadband continuous emission spectrum with a full width at half-maximum of 365 nm originating from intrinsic self-trapped exciton recombination and abundant 4f-4f transitions of the Ln dopants. Steady-state and transient-state spectra were used to ascertain the energy transfer and emissive processes. To avoid adverse energy interactions between the various Ln ions in a single DP host, a heterogeneous architecture was designed to spatially confine different Ln dopants via a "DP-in-glass composite" (DiG) structure. This bottom-up strategy endowed the prepared Ln-doped DIG with a high PLQY of 40% (nearly three times as high as that of the multidoped DP) and superior long-term stability. Finally, a compact Vis-NIR ultrabroadband (4002000 nm) light source was easily fabricated by coupling the DiG with a commercial UV LED chip, and this light source has promising applications in nondestructive spectroscopic analyses and multifunctional lighting.

摘要

杂质掺杂是一种通过引入外在电子通道来调节主体材料光电性能的有效方法。在此,一族镧系(Ln)离子成功地掺入到Bi:CsAgInCl无铅双钙钛矿(DP)半导体中,将光谱范围从可见光(Vis)扩展到近红外(NIR),并提高了光致发光量子产率(PLQY)。在用Nd、Yb、Er和Tm进行多掺杂后,Bi/Ln:CsAgInCl产生了一个半高宽约为365nm的超宽带连续发射光谱,其源于本征自陷激子复合以及Ln掺杂剂丰富的4f-4f跃迁。利用稳态和瞬态光谱来确定能量转移和发射过程。为了避免单个DP主体中各种Ln离子之间的不利能量相互作用,设计了一种异质结构,通过“玻璃中的DP复合材料”(DiG)结构在空间上限制不同的Ln掺杂剂。这种自下而上的策略赋予了制备的Ln掺杂DIG高达40%的高PLQY(几乎是多掺杂DP的三倍)和优异的长期稳定性。最后,通过将DiG与商用紫外LED芯片耦合,很容易制造出一种紧凑的可见-近红外超宽带(400~2000nm)光源,并且这种光源在无损光谱分析和多功能照明方面具有广阔的应用前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ada/8901751/31d2d33473ee/41377_2022_739_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验