Suppr超能文献

sgRNA 的位点特异性和酶促交联使 CRISPR 基因编辑的波长选择光激活控制成为可能。

Site-Specific and Enzymatic Cross-Linking of sgRNA Enables Wavelength-Selectable Photoactivated Control of CRISPR Gene Editing.

机构信息

Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States.

Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, United States.

出版信息

J Am Chem Soc. 2022 Mar 16;144(10):4487-4495. doi: 10.1021/jacs.1c12166. Epub 2022 Mar 8.

Abstract

Chemical cross-linking enables rapid identification of RNA-protein and RNA-nucleic acid inter- and intramolecular interactions. However, no method exists to site-specifically and covalently cross-link two user-defined sites within an RNA. Here, we develop RNA-CLAMP, which enables site-specific and enzymatic cross-linking (clamping) of two selected guanine residues within an RNA. Intramolecular clamping can disrupt normal RNA function, whereas subsequent photocleavage of the cross-linker restores activity. We used RNA-CLAMP to clamp two stem loops within the single-guide RNA (sgRNA) of the CRISPR-Cas9 gene editing system via a photocleavable cross-linker, completely inhibiting gene editing. Visible light irradiation cleaved the cross-linker and restored gene editing with high spatiotemporal resolution. Design of two photocleavable linkers responsive to different wavelengths of light allowed multiplexed photoactivation of gene editing in mammalian cells. This photoactivated CRISPR-Cas9 gene editing platform benefits from undetectable background activity, provides a choice of activation wavelengths, and has multiplexing capabilities.

摘要

化学交联可快速鉴定 RNA-蛋白质和 RNA-核酸的分子内和分子间相互作用。然而,目前尚无方法能够在 RNA 内定点且共价交联两个用户定义的位点。在这里,我们开发了 RNA-CLAMP,它能够在 RNA 内的两个选定的鸟嘌呤残基上进行定点和酶促交联(夹合)。分子内夹合会破坏 RNA 的正常功能,而随后用光解交联剂切割则可以恢复其活性。我们使用 RNA-CLAMP 通过光可裂解交联剂将 CRISPR-Cas9 基因编辑系统的单指导 RNA(sgRNA)内的两个茎环进行夹合,从而完全抑制基因编辑。可见光照射可切割交联剂,并以高时空分辨率恢复基因编辑。设计两个对不同波长的光有响应的光可裂解接头允许在哺乳动物细胞中对基因编辑进行多重光激活。这种光激活的 CRISPR-Cas9 基因编辑平台具有不可检测的背景活性、提供激活波长的选择以及具有多重化能力。

相似文献

4
Smart Strategies for Precise Delivery of CRISPR/Cas9 in Genome Editing.精准递送 CRISPR/Cas9 在基因组编辑中的智能策略。
ACS Appl Bio Mater. 2022 Feb 21;5(2):413-437. doi: 10.1021/acsabm.1c01112. Epub 2022 Jan 18.
6
"Split-and-Click" sgRNA."分割点击" sgRNA。
Methods Mol Biol. 2021;2162:61-78. doi: 10.1007/978-1-0716-0687-2_5.
8
Guide RNA Design for CRISPR/Cas9-Mediated Potato Genome Editing.用于CRISPR/Cas9介导的马铃薯基因组编辑的引导RNA设计
Dokl Biochem Biophys. 2018 Mar;479(1):90-94. doi: 10.1134/S1607672918020084. Epub 2018 May 19.

引用本文的文献

3
Dynamic Transcription Machineries in Protocells.原始细胞中的动态转录机制
J Am Chem Soc. 2025 Jun 4;147(22):18359-18373. doi: 10.1021/jacs.5c03622. Epub 2025 May 23.
5
Light-Triggered CRISPR/Cas12a for Genomic Editing and Tumor Regression.用于基因组编辑和肿瘤消退的光触发CRISPR/Cas12a
Angew Chem Int Ed Engl. 2025 Jul 7;64(28):e202502892. doi: 10.1002/anie.202502892. Epub 2025 May 19.

本文引用的文献

1
Inference of CRISPR Edits from Sanger Trace Data.从 Sanger 测序数据推断 CRISPR 编辑。
CRISPR J. 2022 Feb;5(1):123-130. doi: 10.1089/crispr.2021.0113. Epub 2022 Feb 2.
4
The chemistry and applications of RNA 2'-OH acylation.RNA 2'-羟基酰化的化学性质与应用
Nat Rev Chem. 2020 Jan;4(1):22-37. doi: 10.1038/s41570-019-0147-6. Epub 2019 Nov 19.
5
Trapping Transient RNA Complexes by Chemically Reversible Acylation.通过化学可逆酰化作用捕获瞬时 RNA 复合物。
Angew Chem Int Ed Engl. 2020 Dec 1;59(49):22017-22022. doi: 10.1002/anie.202010861. Epub 2020 Sep 28.
9
Multiplexed Photoactivation of mRNA with Single-Cell Resolution.单细胞分辨率下的 mRNA 多重光激活
ACS Chem Biol. 2020 Jul 17;15(7):1773-1779. doi: 10.1021/acschembio.0c00205. Epub 2020 Jun 12.
10
Light-Driven Activation of RNA-Guided Nucleic Acid Cleavage.光驱动的 RNA 引导的核酸切割激活。
ACS Chem Biol. 2020 Jun 19;15(6):1455-1463. doi: 10.1021/acschembio.0c00105. Epub 2020 May 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验