Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.
International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States.
J Am Chem Soc. 2022 Mar 23;144(11):4792-4798. doi: 10.1021/jacs.1c11118. Epub 2022 Mar 8.
We use scanning probe block copolymer lithography in a two-step sequential manner to explore the deposition of secondary metals on nanoparticle seeds. When single element nanoparticles (Au, Ag, Cu, Co, or Ni) were used as seeds, both heterogeneous and homogeneous growth occurred, as rationalized using the thermodynamic concepts of bond strength and lattice mismatch. Specifically, heterogeneous growth occurs when the heterobond strength between the seed and growth atoms is stronger than the homobond strength between the growth atoms. Moreover, the resulting nanoparticle structure depends on the degree of lattice mismatch between the seed and growth metals. Specifically, a large lattice mismatch (e.g., 13.82% for Au and Ni) typically resulted in heterodimers, whereas a small lattice mismatch (e.g., 0.19% for Au and Ag) resulted in core-shell structures. Interestingly, when heterodimer nanoparticles were used as seeds, the secondary metals deposited asymmetrically on one side of the seed. By programming the deposition conditions of Ag and Cu on AuNi heterodimer seeds, two distinct nanostructures were synthesized with (1) Ag and Cu on the Au domain and (2) Ag on the Au domain and Cu on the Ni domain, illustrating how this technique can be used to predictively synthesize structurally complex, multimetallic nanostructures.
我们采用两步顺序扫描探针嵌段共聚物光刻技术来探索在纳米颗粒种子上沉积次级金属。当使用单元素纳米颗粒(Au、Ag、Cu、Co 或 Ni)作为种子时,由于使用了键强度和晶格失配的热力学概念,发生了异质和同质生长。具体而言,当种子和生长原子之间的异质键强度强于生长原子之间的同质键强度时,就会发生异质生长。此外,所得纳米颗粒结构取决于种子和生长金属之间的晶格失配程度。具体而言,大的晶格失配(例如 Au 和 Ni 之间为 13.82%)通常导致异二聚体,而小的晶格失配(例如 Au 和 Ag 之间为 0.19%)导致核壳结构。有趣的是,当使用异二聚体纳米颗粒作为种子时,次级金属在种子的一侧不对称地沉积。通过编程在 AuNi 异二聚体种子上沉积 Ag 和 Cu 的条件,合成了两种具有明显区别的纳米结构:(1)Ag 和 Cu 在 Au 域上,(2)Ag 在 Au 域上而 Cu 在 Ni 域上,这说明了该技术如何可用于预测性地合成结构复杂的多金属纳米结构。