Department of Microbiology, The Ohio State Universitygrid.261331.4, Columbus, Ohio, USA.
The Center for RNA Biology, The Ohio State Universitygrid.261331.4, Columbus, Ohio, USA.
J Bacteriol. 2022 Apr 19;204(4):e0059921. doi: 10.1128/jb.00599-21. Epub 2022 Mar 8.
Nucleoid-associated proteins (NAPs) silence xenogenes by blocking RNA polymerase binding to promoters and hindering transcript elongation. In Escherichia coli, H-NS and its homolog SptA interact with YmoA proteins Hha and YdgT to assemble nucleoprotein filaments that facilitate transcription termination by Rho, which acts in synergy with NusG. Countersilencing during initiation is facilitated by proteins that exclude NAPs from promoter regions, but auxiliary factors that alleviate silencing during elongation are not known. A specialized NusG paralog, RfaH, activates lipopolysaccharide core biosynthesis operons, enabling survival in the presence of detergents and antibiotics. RfaH strongly inhibits Rho-dependent termination by reducing RNA polymerase pausing, promoting translation, and competing with NusG. We hypothesize that RfaH also acts as a countersilencer of NAP/YmoA filaments. We show that deletions of and + suppress the growth defects of Δ by alleviating Rho-mediated polarity within the operon. The absence of YmoA proteins exacerbates cellular defects caused by reduced Rho levels or Rho inhibition by bicyclomycin but has negligible effects at a strong model Rho-dependent terminator. Our findings that the distribution of Hha and RfaH homologs is strongly correlated supports a model in which they comprise a silencing/countersilencing pair that controls expression of chromosomal and plasmid-encoded xenogenes. Horizontally acquired DNA drives bacterial evolution, but its unregulated expression may harm the recipient. Xenogeneic silencers recognize foreign genes and inhibit their transcription. However, some xenogenes, such as those encoding lipo- and exopolysaccharides, confer resistance to antibiotics, bile salts, and detergents, necessitating the existence of countersilencing fitness mechanisms. Here, we present evidence that Escherichia coli antiterminator RfaH alleviates silencing of the chromosomal operon and propose that plasmid-encoded RfaH homologs promote dissemination of antibiotic resistance genes through conjugation.
核小体相关蛋白 (NAPs) 通过阻止 RNA 聚合酶与启动子结合并阻碍转录延伸来使异源基因沉默。在大肠杆菌中,H-NS 及其同源物 SptA 与 YmoA 蛋白 Hha 和 YdgT 相互作用,组装核蛋白丝,促进 Rho 介导的转录终止,Rho 与 NusG 协同作用。启动子区域的蛋白质将 NAPs 排除在外,从而促进起始时的反沉默,但尚不清楚在延伸过程中缓解沉默的辅助因子。一种特殊的 NusG 同工蛋白 RfaH 激活脂多糖核心生物合成操纵子,使细菌在存在去污剂和抗生素时能够存活。RfaH 通过减少 RNA 聚合酶暂停、促进翻译和与 NusG 竞争来强烈抑制 Rho 依赖性终止。我们假设 RfaH 也作为 NAP/YmoA 丝的反沉默因子发挥作用。我们表明,和 + 缺失可缓解 操纵子中 Rho 介导的极性,从而减轻 Δ 的生长缺陷。YmoA 蛋白的缺失会加剧由于 Rho 水平降低或双环霉素抑制 Rho 引起的细胞缺陷,但在强模型 Rho 依赖性终止子中几乎没有影响。我们发现 Hha 和 RfaH 同源物的分布强烈相关,支持它们构成一个沉默/反沉默对的模型,该模型控制染色体和质粒编码的异源基因的表达。水平获得的 DNA 驱动细菌进化,但不受调控的表达可能会伤害受体。异源基因沉默因子识别外来基因并抑制其转录。然而,一些异源基因,如编码脂多糖和胞外多糖的基因,赋予了对抗生素、胆汁盐和去污剂的抗性,这就需要存在反沉默适应机制。在这里,我们提供了证据表明大肠杆菌抗终止子 RfaH 缓解了染色体 操纵子的沉默,并提出了质粒编码的 RfaH 同源物通过接合促进抗生素抗性基因的传播。