Mooney Rachel A, Zhu Junqiao, Saba Jason, Landick Robert
Department of Biochemistry, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, United States.
Department of Biochemistry, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, United States.
J Mol Biol. 2025 Jan 1;437(1):168814. doi: 10.1016/j.jmb.2024.168814. Epub 2024 Oct 5.
The accurate and efficient biogenesis of RNA by cellular RNA polymerase (RNAP) requires accessory factors that regulate the initiation, elongation, and termination of transcription. Of the many discovered to date, the elongation regulator NusG-Spt5 is the only universally conserved transcription factor. With orthologs and paralogs found in all three domains of life, this ubiquity underscores their ancient and essential regulatory functions. NusG-Spt5 proteins evolved to maintain a similar binding interface to RNAP through contacts of the NusG N-terminal domain (NGN) that bridge the main DNA-binding cleft. We propose that varying strength of these contacts, modulated by tethering interactions, either decrease transcriptional pausing by smoothing the rugged thermodynamic landscape of transcript elongation or enhance pausing, depending on which conformation of RNAP is stabilized by NGN contacts. NusG-Spt5 contains one (in bacteria and archaea) or more (in eukaryotes) C-terminal domains that use a KOW fold to contact diverse targets, tether the NGN, and control RNA biogenesis. Recent work highlights these diverse functions in different organisms. Some bacteria contain multiple specialized NusG paralogs that regulate subsets of operons via sequence-specific targeting, controlling production of antibiotics, toxins, or capsule proteins. Despite their common origin, NusG orthologs can differ in their target selection, interacting partners, and effects on RNA synthesis. We describe the current understanding of NusG-Spt5 structure, interactions with RNAP and other regulators, and cellular functions including significant recent progress from genome-wide analyses, single-molecule visualization, and cryo-EM. The recent findings highlight the remarkable diversity of function among these structurally conserved proteins.
细胞RNA聚合酶(RNAP)准确而高效地进行RNA生物合成需要辅助因子来调节转录的起始、延伸和终止。在迄今为止发现的众多辅助因子中,延伸调节因子NusG-Spt5是唯一普遍保守的转录因子。由于在生命的三个域中都发现了其直系同源物和旁系同源物,这种普遍性凸显了它们古老而重要的调节功能。NusG-Spt5蛋白通过NusG N端结构域(NGN)的接触进化出与RNAP相似的结合界面,该结构域跨越主要的DNA结合裂隙。我们提出,这些接触的强度变化由拴系相互作用调节,要么通过平滑转录延伸的崎岖热力学景观来减少转录暂停,要么增强暂停,这取决于NGN接触稳定了RNAP的哪种构象。NusG-Spt5包含一个(在细菌和古细菌中)或多个(在真核生物中)C端结构域,这些结构域利用KOW折叠来接触不同的靶标、拴系NGN并控制RNA生物合成。最近的研究突出了这些在不同生物体中的多样功能。一些细菌含有多个专门的NusG旁系同源物,它们通过序列特异性靶向调节操纵子的子集,控制抗生素、毒素或荚膜蛋白的产生。尽管它们有共同的起源,但NusG直系同源物在靶标选择、相互作用伙伴以及对RNA合成的影响方面可能存在差异。我们描述了目前对NusG-Spt5结构、与RNAP和其他调节因子的相互作用以及细胞功能的理解,包括全基因组分析、单分子可视化和冷冻电镜等方面的重大最新进展。最近的发现突出了这些结构保守蛋白之间功能的显著多样性。