Suppr超能文献

使用众包服务进行酒精和尼古丁使用研究:在亚马逊 Mechanical Turk 上的流行程度、数据质量和流失率。

Using Crowdsourcing for Alcohol and Nicotine Use Research: Prevalence, Data Quality, and Attrition on Amazon Mechanical Turk.

机构信息

Department of Health Education and Behavior, University of Florida, Gainesville, Florida, USA.

Department of Psychology, University of Florida, Gainesville, Florida, USA.

出版信息

Subst Use Misuse. 2022;57(6):857-866. doi: 10.1080/10826084.2022.2046096. Epub 2022 Mar 8.

Abstract

BackgroundGauging the feasibility of using Amazon Mechanical Turk ® (MTurk) for various types of substance use research is precluded by a lack of information pertaining to the recruitment process in published studies utilizing it and concurrent information on data quality. ObjectiveThe present report addressed this gap by documenting the prevalence of alcohol and nicotine use, self-reported major health conditions, and information on data quality and retention on MTurk. Individuals 21 to 90 years old ( = 1101, age = 30) with United States-based MTurk accounts completed a stand-alone screening survey. The screening consisted of basic demographic, substance use, and physical/mental health questions, as well as items to gauge language proficiency/attention (i.e., data quality). ResultsPoor quality data was infrequent (6.5% of participants) and associated with self-reported non-United States residence, affirmative responding (e.g., currently pregnant, using both alcohol and nicotine), and other response characteristics (e.g., not disclosing health conditions). Among those passing quality checks, alcohol and nicotine use were relatively common (71.5% and 24.8%). Major physical (6.3%) and mental health conditions (14.8%) were less common. Despite not sending direct invitations, most eligible participants returned to and completed the main study (81.7%). Conclusions/Importance: Alcohol and nicotine use were relatively common among MTurk workers and retention rates were high. Together with the low prevalence of poor quality data, MTurk appears to remain a fruitful platform for substance use research; although researchers must be diligent in using appropriate screening tools, as substance use was sometimes associated with poor data quality and MTurk account information may not be reliable.

摘要

背景

由于缺乏发表的利用亚马逊 Mechanical Turk ®(MTurk)进行各种类型物质使用研究的征募过程相关信息,以及同时关于数据质量的信息,因此无法评估利用 MTurk 进行研究的可行性。目的:本报告通过记录 MTurk 上的酒精和尼古丁使用、自我报告的主要健康状况以及数据质量和保留信息的流行率,填补了这一空白。21 至 90 岁(n=1101,年龄=30)、拥有美国 MTurk 账户的个体完成了一个独立的筛选调查。筛选包括基本人口统计学、物质使用和身体/心理健康问题,以及衡量语言熟练程度/注意力的项目(即数据质量)。结果:数据质量差的情况很少见(6.5%的参与者),并且与自我报告的非美国居住、肯定回答(例如,目前怀孕,同时使用酒精和尼古丁)和其他反应特征(例如,不披露健康状况)有关。在通过质量检查的参与者中,酒精和尼古丁的使用相对常见(71.5%和 24.8%)。主要的身体(6.3%)和心理健康状况(14.8%)则较为少见。尽管没有发送直接邀请,但大多数符合条件的参与者返回并完成了主要研究(81.7%)。结论/意义:MTurk 上的酒精和尼古丁使用相对常见,保留率很高。结合低质量数据的低流行率,MTurk 似乎仍然是物质使用研究的一个富有成效的平台;尽管研究人员必须勤奋地使用适当的筛选工具,因为物质使用有时与数据质量差有关,并且 MTurk 账户信息可能不可靠。

相似文献

本文引用的文献

6
Contribution of cannabis-related cues to concurrent reinforcer choice in humans.大麻相关线索对人类同时强化物选择的影响。
Drug Alcohol Depend. 2019 Jun 1;199:85-91. doi: 10.1016/j.drugalcdep.2019.02.022. Epub 2019 Apr 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验