Suppr超能文献

使用亚马逊 Mechanical Turk(MTurk)进行饮食失调研究的关注点和建议。

Concerns and recommendations for using Amazon MTurk for eating disorder research.

机构信息

Charleston Area Medical Center, Charleston, West Virginia, USA.

Charleston Area Medical Center - Institute for Academic Medicine, Charleston, West Virginia, USA.

出版信息

Int J Eat Disord. 2022 Feb;55(2):263-272. doi: 10.1002/eat.23614. Epub 2021 Sep 25.

Abstract

OBJECTIVE

Our original aim was to validate and norm common eating disorder (ED) symptom measures in a large, representative community sample of transgender adults in the United States. We recruited via Amazon Mechanical Turk (MTurk), a popular online recruitment and data collection platform both within and outside of the ED field. We present an overview of our experience using MTurk.

METHOD

Recruitment began in Spring 2020; our original target N was 2,250 transgender adults stratified evenly across the United States. Measures included a demographics questionnaire, the Eating Disorder Examination-Questionnaire, and the Eating Attitudes Test-26. Consistent with current literature recommendations, we implemented a comprehensive set of attention and validity measures to reduce and identify bot responding, data farming, and participant misrepresentation.

RESULTS

Recommended validity and attention checks failed to identify the majority of likely invalid responses. Our collection of two similar ED measures, thorough weight history assessment, and gender identity experiences allowed us to examine response concordance and identify impossible and improbable responses, which revealed glaring discrepancies and invalid data. Furthermore, qualitative data (e.g., emails received from MTurk workers) raised concerns about economic conditions facing MTurk workers that could compel misrepresentation.

DISCUSSION

Our results strongly suggest most of our data were invalid, and call into question results of recently published MTurk studies. We assert that caution and rigor must be applied when using MTurk as a recruitment tool for ED research, and offer several suggestions for ED researchers to mitigate and identify invalid data.

摘要

目的

我们最初的目的是在一个来自美国的具有代表性的大型跨性别成年人社区样本中验证和规范常见的饮食障碍(ED)症状测量方法。我们通过亚马逊 Mechanical Turk(MTurk)进行招募,这是一个在 ED 领域内外都非常流行的在线招募和数据收集平台。我们将介绍我们使用 MTurk 的经验概述。

方法

招募工作于 2020 年春季开始;我们最初的目标 N 是 2250 名跨性别成年人,在美国各地均匀分层。测量方法包括人口统计学问卷、饮食障碍检查问卷和饮食态度测试-26。与当前文献的建议一致,我们实施了一套全面的注意力和有效性措施,以减少和识别机器人响应、数据养殖和参与者虚假陈述。

结果

推荐的有效性和注意力检查未能识别出大多数可能的无效响应。我们收集了两种类似的 ED 测量方法、详细的体重史评估以及性别认同经验,使我们能够检查响应一致性并识别不可能和不太可能的响应,这揭示了明显的差异和无效数据。此外,定性数据(例如,从 MTurk 工人收到的电子邮件)引起了对 MTurk 工人面临的经济状况的关注,这可能迫使他们进行虚假陈述。

讨论

我们的结果强烈表明,我们的大部分数据都是无效的,并对最近发表的 MTurk 研究结果提出了质疑。我们断言,在使用 MTurk 作为 ED 研究的招募工具时,必须谨慎和严格,并为 ED 研究人员提供了一些建议,以减轻和识别无效数据。

相似文献

6
Practice makes perfect: Commentary on Burnette et al. (2021).熟能生巧:评 Burnette 等人(2021 年)的观点。
Int J Eat Disord. 2022 Feb;55(2):273-275. doi: 10.1002/eat.23657. Epub 2021 Dec 19.

引用本文的文献

本文引用的文献

1
A literature review of the economics of COVID-19.关于2019冠状病毒病经济学的文献综述。
J Econ Surv. 2021 Sep;35(4):1007-1044. doi: 10.1111/joes.12423. Epub 2021 Apr 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验