Suppr超能文献

血气分析数据集的数据元素识别:开发注册系统和基于人工智能的系统的基础。

Identification of data elements for blood gas analysis dataset: a base for developing registries and artificial intelligence-based systems.

机构信息

Health Information Management Research Center (HIMRC), Kashan University of Medical Sciences, Kashan, Iran.

Department of Health Information Management & Technology, School of Allied Health Professions, Kashan University of Medical Sciences, Kashan, Iran.

出版信息

BMC Health Serv Res. 2022 Mar 8;22(1):317. doi: 10.1186/s12913-022-07706-y.

Abstract

BACKGROUND

One of the challenging decision-making tasks in healthcare centers is the interpretation of blood gas tests. One of the most effective assisting approaches for the interpretation of blood gas analysis (BGA) can be artificial intelligence (AI)-based decision support systems. A primary step to develop intelligent systems is to determine information requirements and automated data input for the secondary analyses. Datasets can help the automated data input from dispersed information systems. Therefore, the current study aimed to identify the data elements required for supporting BGA as a dataset.

MATERIALS AND METHODS

This cross-sectional descriptive study was conducted in Nemazee Hospital, Shiraz, Iran. A combination of literature review, experts' consensus, and the Delphi technique was used to develop the dataset. A review of the literature was performed on electronic databases to find the dataset for BGA. An expert panel was formed to discuss on, add, or remove the data elements extracted through searching the literature. Delphi technique was used to reach consensus and validate the draft dataset.

RESULTS

The data elements of the BGA dataset were categorized into ten categories, namely personal information, admission details, present illnesses, past medical history, social status, physical examination, paraclinical investigation, blood gas parameter, sequential organ failure assessment (SOFA) score, and sampling technique errors. Overall, 313 data elements, including 172 mandatory and 141 optional data elements were confirmed by the experts for being included in the dataset.

CONCLUSIONS

We proposed a dataset as a base for registries and AI-based systems to assist BGA. It helps the storage of accurate and comprehensive data, as well as integrating them with other information systems. As a result, high-quality care is provided and clinical decision-making is improved.

摘要

背景

医疗中心最具挑战性的决策任务之一是解读血气检测结果。解读血气分析(BGA)的最有效辅助方法之一是人工智能(AI)为基础的决策支持系统。开发智能系统的首要步骤是确定信息需求并为二次分析实现自动化数据输入。数据集可以帮助从分散的信息系统中实现自动化数据输入。因此,本研究旨在确定支持 BGA 的数据集所需的数据元素。

材料和方法

这是一项横断面描述性研究,在伊朗设拉子的 Nemazee 医院进行。采用文献回顾、专家共识和德尔菲技术相结合的方法来开发数据集。通过检索电子数据库对文献进行综述,以找到 BGA 的数据集。成立了一个专家小组,讨论、添加或删除通过文献检索提取的数据元素。使用德尔菲技术达成共识并验证数据集草案。

结果

BGA 数据集的数据元素分为十类,分别是个人信息、入院详情、现患疾病、既往病史、社会地位、体格检查、辅助检查、血气参数、序贯器官衰竭评估(SOFA)评分和采样技术误差。总体而言,有 313 个数据元素,包括 172 个必填和 141 个可选数据元素,被专家确认纳入数据集。

结论

我们提出了一个数据集,作为 BGA 注册系统和基于 AI 的系统的基础。它有助于存储准确和全面的数据,并将其与其他信息系统集成。从而提供高质量的护理并改善临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0429/8902779/35977de65a67/12913_2022_7706_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验