Suppr超能文献

运用机器学习分析常规收集的重症监护病房数据:系统评价。

Use of machine learning to analyse routinely collected intensive care unit data: a systematic review.

机构信息

NIHR Bristol Biomedical Research Centre, University of Bristol, Bristol, UK.

Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.

出版信息

Crit Care. 2019 Aug 22;23(1):284. doi: 10.1186/s13054-019-2564-9.

Abstract

BACKGROUND

Intensive care units (ICUs) face financial, bed management, and staffing constraints. Detailed data covering all aspects of patients' journeys into and through intensive care are now collected and stored in electronic health records: machine learning has been used to analyse such data in order to provide decision support to clinicians.

METHODS

Systematic review of the applications of machine learning to routinely collected ICU data. Web of Science and MEDLINE databases were searched to identify candidate articles: those on image processing were excluded. The study aim, the type of machine learning used, the size of dataset analysed, whether and how the model was validated, and measures of predictive accuracy were extracted.

RESULTS

Of 2450 papers identified, 258 fulfilled eligibility criteria. The most common study aims were predicting complications (77 papers [29.8% of studies]), predicting mortality (70 [27.1%]), improving prognostic models (43 [16.7%]), and classifying sub-populations (29 [11.2%]). Median sample size was 488 (IQR 108-4099): 41 studies analysed data on > 10,000 patients. Analyses focused on 169 (65.5%) papers that used machine learning to predict complications, mortality, length of stay, or improvement of health. Predictions were validated in 161 (95.2%) of these studies: the area under the ROC curve (AUC) was reported by 97 (60.2%) but only 10 (6.2%) validated predictions using independent data. The median AUC was 0.83 in studies of 1000-10,000 patients, rising to 0.94 in studies of > 100,000 patients. The most common machine learning methods were neural networks (72 studies [42.6%]), support vector machines (40 [23.7%]), and classification/decision trees (34 [20.1%]). Since 2015 (125 studies [48.4%]), the most common methods were support vector machines (37 studies [29.6%]) and random forests (29 [23.2%]).

CONCLUSIONS

The rate of publication of studies using machine learning to analyse routinely collected ICU data is increasing rapidly. The sample sizes used in many published studies are too small to exploit the potential of these methods. Methodological and reporting guidelines are needed, particularly with regard to the choice of method and validation of predictions, to increase confidence in reported findings and aid in translating findings towards routine use in clinical practice.

摘要

背景

重症监护病房(ICU)面临着财务、床位管理和人员配备方面的限制。现在,详细的数据涵盖了患者进入和离开重症监护的各个方面,这些数据都被收集并存储在电子健康记录中:现在已经使用机器学习来分析这些数据,以便为临床医生提供决策支持。

方法

系统地回顾了机器学习在常规 ICU 数据中的应用。在 Web of Science 和 MEDLINE 数据库中搜索了候选文章:排除了图像处理的文章。提取了研究目的、使用的机器学习类型、分析的数据集大小、模型是否以及如何验证以及预测准确性的衡量标准。

结果

在 2450 篇论文中,有 258 篇符合入选标准。最常见的研究目的是预测并发症(77 篇论文[占研究的 29.8%])、预测死亡率(70 篇[占 27.1%])、改进预后模型(43 篇[占 16.7%])和分类亚群(29 篇[占 11.2%])。中位样本量为 488(IQR 108-4099):41 项研究分析了超过 10000 名患者的数据。分析重点是 169 篇(65.5%)使用机器学习预测并发症、死亡率、住院时间或改善健康状况的论文。这些研究中有 161 篇(95.2%)验证了预测:169 篇中有 97 篇(60.2%)报告了 ROC 曲线下面积(AUC),但只有 10 篇(6.2%)使用独立数据验证了预测。在研究患者人数为 1000-10000 人的研究中,中位数 AUC 为 0.83,而在研究患者人数超过 100000 人的研究中,中位数 AUC 为 0.94。最常见的机器学习方法是神经网络(72 篇论文[占 42.6%])、支持向量机(40 篇[占 23.7%])和分类/决策树(34 篇[占 20.1%])。自 2015 年(125 篇论文[占 48.4%])以来,最常见的方法是支持向量机(37 篇论文[占 29.6%])和随机森林(29 篇论文[占 23.2%])。

结论

使用机器学习分析常规 ICU 数据的研究的出版率正在迅速增加。许多已发表研究的样本量太小,无法充分利用这些方法的潜力。需要制定方法学和报告指南,特别是在方法选择和预测验证方面,以提高报告结果的可信度,并帮助将研究结果转化为临床实践中的常规应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4b4/6704673/dcb7ba7ae510/13054_2019_2564_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验