Suppr超能文献

MMV-Net:用于多频电阻抗断层成像的多测量向量网络

MMV-Net: A Multiple Measurement Vector Network for Multifrequency Electrical Impedance Tomography.

作者信息

Chen Zhou, Xiang Jinxi, Bagnaninchi Pierre-Olivier, Yang Yunjie

出版信息

IEEE Trans Neural Netw Learn Syst. 2023 Nov;34(11):8938-8949. doi: 10.1109/TNNLS.2022.3154108. Epub 2023 Oct 27.

Abstract

Multifrequency electrical impedance tomography (mfEIT) is an emerging biomedical imaging modality to reveal frequency-dependent conductivity distributions in biomedical applications. Conventional model-based image reconstruction methods suffer from low spatial resolution, unconstrained frequency correlation, and high computational cost. Deep learning has been extensively applied in solving the EIT inverse problem in biomedical and industrial process imaging. However, most existing learning-based approaches deal with the single-frequency setup, which is inefficient and ineffective when extended to the multifrequency setup. This article presents a multiple measurement vector (MMV) model-based learning algorithm named MMV-Net to solve the mfEIT image reconstruction problem. MMV-Net considers the correlations between mfEIT images and unfolds the update steps of the Alternating Direction Method of Multipliers for the MMV problem (MMV-ADMM). The nonlinear shrinkage operator associated with the weighted l regularization term of MMV-ADMM is generalized in MMV-Net with a cascade of a Spatial Self-Attention module and a Convolutional Long Short-Term Memory (ConvLSTM) module to better capture intrafrequency and interfrequency dependencies. The proposed MMV-Net was validated on our Edinburgh mfEIT Dataset and a series of comprehensive experiments. The results show superior image quality, convergence performance, noise robustness, and computational efficiency against the conventional MMV-ADMM and the state-of-the-art deep learning methods.

摘要

多频电阻抗断层成像(mfEIT)是一种新兴的生物医学成像模态,用于在生物医学应用中揭示频率依赖性电导率分布。传统的基于模型的图像重建方法存在空间分辨率低、频率相关性无约束和计算成本高的问题。深度学习已广泛应用于解决生物医学和工业过程成像中的EIT逆问题。然而,大多数现有的基于学习的方法处理的是单频设置,当扩展到多频设置时效率低下且效果不佳。本文提出了一种基于多测量向量(MMV)模型的学习算法MMV-Net来解决mfEIT图像重建问题。MMV-Net考虑了mfEIT图像之间的相关性,并展开了用于MMV问题的交替方向乘子法(MMV-ADMM)的更新步骤。与MMV-ADMM的加权l正则化项相关的非线性收缩算子在MMV-Net中通过空间自注意力模块和卷积长短期记忆(ConvLSTM)模块的级联进行了推广,以更好地捕捉频率内和频率间的依赖性。所提出的MMV-Net在我们的爱丁堡mfEIT数据集和一系列综合实验上得到了验证。结果表明,与传统的MMV-ADMM和最先进的深度学习方法相比,MMV-Net具有卓越的图像质量、收敛性能、噪声鲁棒性和计算效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验