Zhang Tian-Jiang, Deng Liang-Jian, Huang Ting-Zhu, Chanussot Jocelyn, Vivone Gemine
IEEE Trans Neural Netw Learn Syst. 2023 Nov;34(11):9088-9101. doi: 10.1109/TNNLS.2022.3155655. Epub 2023 Oct 27.
Pansharpening refers to the fusion of a panchromatic (PAN) image with a high spatial resolution and a multispectral (MS) image with a low spatial resolution, aiming to obtain a high spatial resolution MS (HRMS) image. In this article, we propose a novel deep neural network architecture with level-domain-based loss function for pansharpening by taking into account the following double-type structures, i.e., double-level, double-branch, and double-direction, called as triple-double network (TDNet). By using the structure of TDNet, the spatial details of the PAN image can be fully exploited and utilized to progressively inject into the low spatial resolution MS (LRMS) image, thus yielding the high spatial resolution output. The specific network design is motivated by the physical formula of the traditional multi-resolution analysis (MRA) methods. Hence, an effective MRA fusion module is also integrated into the TDNet. Besides, we adopt a few ResNet blocks and some multi-scale convolution kernels to deepen and widen the network to effectively enhance the feature extraction and the robustness of the proposed TDNet. Extensive experiments on reduced- and full-resolution datasets acquired by WorldView-3, QuickBird, and GaoFen-2 sensors demonstrate the superiority of the proposed TDNet compared with some recent state-of-the-art pansharpening approaches. An ablation study has also corroborated the effectiveness of the proposed approach. The code is available at https://github.com/liangjiandeng/TDNet.
全色锐化是指将具有高空间分辨率的全色(PAN)图像与具有低空间分辨率的多光谱(MS)图像进行融合,旨在获得高空间分辨率的多光谱(HRMS)图像。在本文中,我们提出了一种新颖的深度神经网络架构,该架构具有基于层次域的损失函数,用于全色锐化,它考虑了以下双类型结构,即双层次、双分支和双方向,称为三双网络(TDNet)。通过使用TDNet的结构,可以充分利用和利用PAN图像的空间细节,并逐步注入到低空间分辨率的多光谱(LRMS)图像中,从而产生高空间分辨率的输出。具体的网络设计受到传统多分辨率分析(MRA)方法的物理公式的启发。因此,一个有效的MRA融合模块也被集成到TDNet中。此外,我们采用了一些残差网络(ResNet)块和一些多尺度卷积核来加深和拓宽网络,以有效地增强所提出的TDNet的特征提取能力和鲁棒性。在由WorldView-3、QuickBird和高分-2传感器获取的降分辨率和全分辨率数据集上进行的大量实验表明,与一些最近的先进全色锐化方法相比,所提出的TDNet具有优越性。一项消融研究也证实了所提出方法的有效性。代码可在https://github.com/liangjiandeng/TDNet获取。