Suppr超能文献

CrossDiff:通过交叉预测扩散模型探索全色锐化的自监督表示

CrossDiff: Exploring Self-SupervisedRepresentation of Pansharpening via Cross-Predictive Diffusion Model.

作者信息

Xing Yinghui, Qu Litao, Zhang Shizhou, Zhang Kai, Zhang Yanning, Bruzzone Lorenzo

出版信息

IEEE Trans Image Process. 2024;33:5496-5509. doi: 10.1109/TIP.2024.3461476. Epub 2024 Oct 4.

Abstract

Fusion of a panchromatic (PAN) image and corresponding multispectral (MS) image is also known as pansharpening, which aims to combine abundant spatial details of PAN and spectral information of MS images. Due to the absence of high-resolution MS images, available deep-learning-based methods usually follow the paradigm of training at reduced resolution and testing at both reduced and full resolution. When taking original MS and PAN images as inputs, they always obtain sub-optimal results due to the scale variation. In this paper, we propose to explore the self-supervised representation for pansharpening by designing a cross-predictive diffusion model, named CrossDiff. It has two-stage training. In the first stage, we introduce a cross-predictive pretext task to pre-train the UNet structure based on conditional Denoising Diffusion Probabilistic Model (DDPM). While in the second stage, the encoders of the UNets are frozen to directly extract spatial and spectral features from PAN and MS images, and only the fusion head is trained to adapt for pansharpening task. Extensive experiments show the effectiveness and superiority of the proposed model compared with state-of-the-art supervised and unsupervised methods. Besides, the cross-sensor experiments also verify the generalization ability of proposed self-supervised representation learners for other satellite datasets. Code is available at https://github.com/codgodtao/CrossDiff.

摘要

全色(PAN)图像与相应的多光谱(MS)图像的融合也被称为全色锐化,其目的是将PAN丰富的空间细节与MS图像的光谱信息相结合。由于缺乏高分辨率的MS图像,现有的基于深度学习的方法通常遵循在降低分辨率下训练并在降低分辨率和全分辨率下测试的范式。当将原始的MS和PAN图像作为输入时,由于尺度变化,它们总是会得到次优结果。在本文中,我们提出通过设计一个交叉预测扩散模型CrossDiff来探索全色锐化的自监督表示。它有两个阶段的训练。在第一阶段,我们引入一个交叉预测的预训练任务,基于条件去噪扩散概率模型(DDPM)对UNet结构进行预训练。而在第二阶段,UNet的编码器被冻结,以直接从PAN和MS图像中提取空间和光谱特征,并且只训练融合头以适应全色锐化任务。大量实验表明,与现有的有监督和无监督方法相比,所提出的模型具有有效性和优越性。此外,跨传感器实验也验证了所提出的自监督表示学习器对其他卫星数据集的泛化能力。代码可在https://github.com/codgodtao/CrossDiff获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验