Suppr超能文献

对“p 值 < 0.05 被认为具有统计学意义”这一说法和其他剪切粘贴统计方法的观察性分析。

An observational analysis of the trope "A p-value of < 0.05 was considered statistically significant" and other cut-and-paste statistical methods.

机构信息

Australian Centre for Health Services Innovation and Centre for Healthcare Transformation, School of Public Health and Social Work, Queensland University of Technology, Brisbane, Australia.

Centre for Data Science, School of Computer Science, Queensland University of Technology, Brisbane, Australia.

出版信息

PLoS One. 2022 Mar 9;17(3):e0264360. doi: 10.1371/journal.pone.0264360. eCollection 2022.

Abstract

Appropriate descriptions of statistical methods are essential for evaluating research quality and reproducibility. Despite continued efforts to improve reporting in publications, inadequate descriptions of statistical methods persist. At times, reading statistical methods sections can conjure feelings of dèjá vu, with content resembling cut-and-pasted or "boilerplate text" from already published work. Instances of boilerplate text suggest a mechanistic approach to statistical analysis, where the same default methods are being used and described using standardized text. To investigate the extent of this practice, we analyzed text extracted from published statistical methods sections from PLOS ONE and the Australian and New Zealand Clinical Trials Registry (ANZCTR). Topic modeling was applied to analyze data from 111,731 papers published in PLOS ONE and 9,523 studies registered with the ANZCTR. PLOS ONE topics emphasized definitions of statistical significance, software and descriptive statistics. One in three PLOS ONE papers contained at least 1 sentence that was a direct copy from another paper. 12,675 papers (11%) closely matched to the sentence "a p-value < 0.05 was considered statistically significant". Common topics across ANZCTR studies differentiated between study designs and analysis methods, with matching text found in approximately 3% of sections. Our findings quantify a serious problem affecting the reporting of statistical methods and shed light on perceptions about the communication of statistics as part of the scientific process. Results further emphasize the importance of rigorous statistical review to ensure that adequate descriptions of methods are prioritized over relatively minor details such as p-values and software when reporting research outcomes.

摘要

适当描述统计方法对于评估研究质量和可重复性至关重要。尽管出版物的报告工作一直在不断改进,但统计方法的描述仍不充分。有时,阅读统计方法部分可能会让人产生似曾相识的感觉,内容类似于从已发表的工作中剪切和粘贴或“模板文本”。模板文本的出现表明存在一种机械的统计分析方法,其中使用相同的默认方法,并使用标准化的文本进行描述。为了调查这种做法的程度,我们分析了从 PLOS ONE 和澳大利亚和新西兰临床试验注册处 (ANZCTR) 已发表的统计方法部分中提取的文本。主题建模被应用于分析来自 PLOS ONE 的 111,731 篇论文和在 ANZCTR 注册的 9,523 项研究的数据。PLOS ONE 的主题强调了统计显著性、软件和描述性统计的定义。三分之一的 PLOS ONE 论文至少包含 1 句直接复制自其他论文的句子。12,675 篇论文(11%)与“p 值<0.05 被认为具有统计学意义”这句话非常匹配。ANZCTR 研究中的常见主题区分了研究设计和分析方法,大约 3%的部分中找到了匹配的文本。我们的发现量化了一个严重影响统计方法报告的问题,并揭示了人们对统计学作为科学过程一部分的沟通的看法。结果进一步强调了严格的统计审查的重要性,以确保在报告研究结果时,方法的充分描述优先于 p 值和软件等相对较小的细节。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33dd/8906599/fc9d0f7ef56e/pone.0264360.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验