Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States.
Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States.
Appl Clin Inform. 2022 Jan;13(1):287-300. doi: 10.1055/s-0042-1743240. Epub 2022 Mar 9.
Postpartum depression (PPD) remains an understudied research area despite its high prevalence. The goal of this study is to develop an ontology to aid in the identification of patients with PPD and to enable future analyses with electronic health record (EHR) data.
We used Protégé-OWL to construct a postpartum depression ontology (PDO) of relevant comorbidities, symptoms, treatments, and other items pertinent to the study and treatment of PPD.
The PDO identifies and visualizes the risk factor status of variables for PPD, including comorbidities, confounders, symptoms, and treatments. The PDO includes 734 classes, 13 object properties, and 4,844 individuals. We also linked known and potential risk factors to their respective codes in the International Classification of Diseases versions 9 and 10 that would be useful in structured EHR data analyses. The representation and usefulness of the PDO was assessed using a task-based patient case study approach, involving 10 PPD case studies. Final evaluation of the ontology yielded 86.4% coverage of PPD symptoms, treatments, and risk factors. This demonstrates strong coverage of the PDO for the PPD domain.
The PDO will enable future researchers to study PPD using EHR data as it contains important information with regard to structured (e.g., billing codes) and unstructured data (e.g., synonyms of symptoms not coded in EHRs). The PDO is publicly available through the National Center for Biomedical Ontology (NCBO) BioPortal ( https://bioportal.bioontology.org/ontologies/PARTUMDO ) which will enable other informaticists to utilize the PDO to study PPD in other populations.
尽管产后抑郁症(PPD)的患病率很高,但它仍是一个研究不足的领域。本研究的目的是开发一个本体,以帮助识别患有 PPD 的患者,并能够对电子健康记录(EHR)数据进行未来分析。
我们使用 Protégé-OWL 构建了一个与产后抑郁症相关的共病、症状、治疗和其他与 PPD 研究和治疗相关的项目的产后抑郁症本体(PDO)。
PDO 确定并可视化了 PPD 的风险因素变量的状态,包括共病、混杂因素、症状和治疗。PDO 包括 734 个类、13 个对象属性和 4844 个个体。我们还将已知和潜在的风险因素与其在国际疾病分类第 9 版和第 10 版中的相应代码联系起来,这在结构化 EHR 数据分析中很有用。使用基于任务的患者病例研究方法评估了 PDO 的表示和有用性,涉及 10 个 PPD 病例研究。本体最终评估得出,PDO 对 PPD 症状、治疗和风险因素的覆盖率为 86.4%。这表明 PDO 对 PPD 领域有很强的覆盖。
PDO 将使未来的研究人员能够使用 EHR 数据研究 PPD,因为它包含了与结构化(例如,计费代码)和非结构化数据(例如,未在 EHR 中编码的症状同义词)相关的重要信息。PDO 通过国家生物医学本体论中心(NCBO)BioPortal (https://bioportal.bioontology.org/ontologies/PARTUMDO)公开提供,这将使其他信息学家能够利用 PDO 研究其他人群中的 PPD。