Suppr超能文献

基于机器学习的产后抑郁症预测模型的开发和验证:一项全国性队列研究。

Development and validation of a machine learning-based postpartum depression prediction model: A nationwide cohort study.

机构信息

Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.

Geha Mental Health Center, Petah-Tikva, Israel.

出版信息

Depress Anxiety. 2021 Apr;38(4):400-411. doi: 10.1002/da.23123. Epub 2020 Dec 7.

Abstract

BACKGROUND

Currently, postpartum depression (PPD) screening is mainly based on self-report symptom-based assessment, with lack of an objective, integrative tool which identifies women at increased risk, before the emergent of PPD. We developed and validated a machine learning-based PPD prediction model utilizing electronic health record (EHR) data, and identified novel PPD predictors.

METHODS

A nationwide longitudinal cohort that included 214,359 births between January 2008 and December 2015, divided into model training and validation sets, was constructed utilizing Israel largest health maintenance organization's EHR-database. PPD was defined as new diagnosis of a depressive episode or antidepressant prescription within the first year postpartum. A gradient-boosted decision tree algorithm was applied to EHR-derived sociodemographic, clinical, and obstetric features.

RESULTS

Among the birth cohort, 1.9% (n = 4104) met the case definition of new-onset PPD. In the validation set, the prediction model achieved an area under the curve (AUC) of 0.712 (95% confidence interval, 0.690-0.733), with a sensitivity of 0.349 and a specificity of 0.905 at the 90th percentile risk threshold, identifying PPDs at a rate more than three times higher than the overall set (positive and negative predictive values were 0.074 and 0.985, respectively). The model's strongest predictors included both well-recognized (e.g., past depression) and less-recognized (differing patterns of blood tests) PPD risk factors.

CONCLUSIONS

Machine learning-based models incorporating EHR-derived predictors, could augment symptom-based screening practice by identifying the high-risk population at greatest need for preventive intervention, before development of PPD.

摘要

背景

目前,产后抑郁症(PPD)的筛查主要基于基于自我报告的症状评估,缺乏能够在 PPD 出现之前识别高风险女性的客观、综合工具。我们开发并验证了一种基于机器学习的 PPD 预测模型,利用电子健康记录(EHR)数据,并确定了新的 PPD 预测因子。

方法

构建了一个全国性的纵向队列,该队列包括 2008 年 1 月至 2015 年 12 月期间的 214359 例分娩,分为模型训练集和验证集,利用以色列最大的健康维护组织的 EHR 数据库构建。PPD 的定义为产后一年内新发抑郁发作或抗抑郁药物处方。应用梯度提升决策树算法对 EHR 衍生的社会人口学、临床和产科特征进行分析。

结果

在出生队列中,有 1.9%(n=4104)符合新发 PPD 的病例定义。在验证集中,该预测模型的曲线下面积(AUC)为 0.712(95%置信区间,0.690-0.733),在 90%风险阈值处的灵敏度为 0.349,特异性为 0.905,识别 PPD 的概率高于总体队列(阳性和阴性预测值分别为 0.074 和 0.985)。该模型最强的预测因子包括广为人知的(如既往抑郁症)和不太为人知的(不同的血液测试模式)PPD 风险因素。

结论

基于机器学习的模型结合 EHR 衍生的预测因子,可以通过在 PPD 出现之前识别最需要预防性干预的高风险人群,增强基于症状的筛查实践。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验