Institute of Anatomy and Cell Biology, University of Wuerzburg, Koellikerstraße 6, 97070, Wuerzburg, Germany.
Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377, Munich, Germany.
Cell Death Dis. 2022 Mar 9;13(3):220. doi: 10.1038/s41419-022-04605-2.
Pathological angiogenesis promotes tumor growth, metastasis, and atherosclerotic plaque rupture. Macrophages are key players in these processes. However, whether these macrophages differentiate from bone marrow-derived monocytes or from local vascular wall-resident stem and progenitor cells (VW-SCs) is an unresolved issue of angiogenesis. To answer this question, we analyzed vascular sprouting and alterations in aortic cell populations in mouse aortic ring assays (ARA). ARA culture leads to the generation of large numbers of macrophages, especially within the aortic adventitia. Using immunohistochemical fate-mapping and genetic in vivo-labeling approaches we show that 60% of these macrophages differentiate from bone marrow-independent Ly6c/Sca-1 adventitial progenitor cells. Analysis of the NCX mouse model that genetically lacks embryonic circulation and yolk sac perfusion indicates that at least some of those progenitor cells arise yolk sac-independent. Macrophages represent the main source of VEGF in ARA that vice versa promotes the generation of additional macrophages thereby creating a pro-angiogenetic feedforward loop. Additionally, macrophage-derived VEGF activates CD34 progenitor cells within the adventitial vasculogenic zone to differentiate into CD31 endothelial cells. Consequently, depletion of macrophages and VEGFR2 antagonism drastically reduce vascular sprouting activity in ARA. In summary, we show that angiogenic activation induces differentiation of macrophages from bone marrow-derived as well as from bone marrow-independent VW-SCs. The latter ones are at least partially yolk sac-independent, too. Those VW-SC-derived macrophages critically contribute to angiogenesis, making them an attractive target to interfere with pathological angiogenesis in cancer and atherosclerosis as well as with regenerative angiogenesis in ischemic cardiovascular disorders.
病理性血管生成促进肿瘤生长、转移和动脉粥样硬化斑块破裂。巨噬细胞是这些过程中的关键参与者。然而,这些巨噬细胞是来自骨髓衍生的单核细胞,还是来自局部血管壁驻留的干细胞和祖细胞(VW-SCs),这是血管生成中一个未解决的问题。为了回答这个问题,我们分析了小鼠主动脉环实验(ARA)中的血管发芽和主动脉细胞群体的变化。ARA 培养导致大量巨噬细胞的产生,特别是在主动脉外膜中。使用免疫组织化学示踪和遗传体内标记方法,我们表明这些巨噬细胞中有 60%来自骨髓独立的 Ly6c/Sca-1 外膜祖细胞。对缺乏胚胎循环和卵黄囊灌注的 NCX 小鼠模型的分析表明,至少有一些祖细胞是卵黄囊独立产生的。巨噬细胞是 ARA 中 VEGF 的主要来源,VEGF 反过来又促进了额外巨噬细胞的产生,从而形成了一个促血管生成的正反馈环。此外,巨噬细胞衍生的 VEGF 激活了外膜血管生成区的 CD34 祖细胞分化为 CD31 内皮细胞。因此,巨噬细胞的耗竭和 VEGFR2 拮抗作用大大降低了 ARA 中的血管发芽活性。总之,我们表明,血管生成激活诱导了来自骨髓衍生和骨髓非依赖性 VW-SCs 的巨噬细胞分化。后者至少部分也是卵黄囊独立的。这些 VW-SC 衍生的巨噬细胞对血管生成有重要贡献,使其成为干扰癌症和动脉粥样硬化中的病理性血管生成以及缺血性心血管疾病中的再生血管生成的一个有吸引力的靶点。