Suppr超能文献

使用量子退火器对统计数据进行有损压缩。

Lossy compression of statistical data using quantum annealer.

作者信息

Yoon Boram, Nguyen Nga T T, Chang Chia Cheng, Rrapaj Ermal

机构信息

CCS-7, Computer, Computational and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.

CCS-3, Computer, Computational and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.

出版信息

Sci Rep. 2022 Mar 9;12(1):3814. doi: 10.1038/s41598-022-07539-z.

Abstract

We present a new lossy compression algorithm for statistical floating-point data through a representation learning with binary variables. The algorithm finds a set of basis vectors and their binary coefficients that precisely reconstruct the original data. The optimization for the basis vectors is performed classically, while binary coefficients are retrieved through both simulated and quantum annealing for comparison. A bias correction procedure is also presented to estimate and eliminate the error and bias introduced from the inexact reconstruction of the lossy compression for statistical data analyses. The compression algorithm is demonstrated on two different datasets of lattice quantum chromodynamics simulations. The results obtained using simulated annealing show 3-3.5 times better compression performance than the algorithm based on neural-network autoencoder. Calculations using quantum annealing also show promising results, but performance is limited by the integrated control error of the quantum processing unit, which yields large uncertainties in the biases and coupling parameters. Hardware comparison is further studied between the previous generation D-Wave 2000Q and the current D-Wave Advantage system. Our study shows that the Advantage system is more likely to obtain low-energy solutions for the problems than the 2000Q.

摘要

我们通过使用二元变量的表示学习,提出了一种用于统计浮点数据的新型有损压缩算法。该算法找到一组基向量及其二元系数,以精确重构原始数据。对基向量的优化采用传统方式进行,而二元系数则通过模拟退火和量子退火两种方式来获取并进行比较。还提出了一种偏差校正程序,以估计和消除在统计数据分析的有损压缩的不精确重构中引入的误差和偏差。该压缩算法在晶格量子色动力学模拟的两个不同数据集上进行了演示。使用模拟退火获得的结果表明,其压缩性能比基于神经网络自动编码器的算法高出3至3.5倍。使用量子退火进行的计算也显示出有希望的结果,但性能受到量子处理单元集成控制误差的限制,这在偏差和耦合参数中产生了很大的不确定性。还对上一代D-Wave 2000Q和当前的D-Wave Advantage系统进行了硬件比较研究。我们的研究表明,与2000Q相比,Advantage系统更有可能为这些问题获得低能量解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3fe/8907274/cc3c3747014f/41598_2022_7539_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验