Suppr超能文献

吸湿性多孔石墨烯气凝胶纤维可实现高效的水分捕获、热量分配和微波吸收。

Hygroscopic holey graphene aerogel fibers enable highly efficient moisture capture, heat allocation and microwave absorption.

作者信息

Hou Yinglai, Sheng Zhizhi, Fu Chen, Kong Jie, Zhang Xuetong

机构信息

Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072, Xi'an, PR China.

Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 215123, Suzhou, PR China.

出版信息

Nat Commun. 2022 Mar 9;13(1):1227. doi: 10.1038/s41467-022-28906-4.

Abstract

Aerogel fibers have been recognized as the rising star in the fields of thermal insulation and wearable textiles. Yet, the lack of functionalization in aerogel fibers limits their applications. Herein, we report hygroscopic holey graphene aerogel fibers (LiCl@HGAFs) with integrated functionalities of highly efficient moisture capture, heat allocation, and microwave absorption. LiCl@HGAFs realize the water sorption capacity over 4.15 g g, due to the high surface area and high water uptake kinetics. Moreover, the sorbent can be regenerated through both photo-thermal and electro-thermal approaches. Along with the water sorption and desorption, LiCl@HGAFs experience an efficient heat transfer process, with a heat storage capacity of 6.93 kJ g. The coefficient of performance in the heating and cooling mode can reach 1.72 and 0.70, respectively. Notably, with the entrapped water, LiCl@HGAFs exhibit broad microwave absorption with a bandwidth of 9.69 GHz, good impedance matching, and a high attenuation constant of 585. In light of these findings, the multifunctional LiCl@HGAFs open an avenue for applications in water harvest, heat allocation, and microwave absorption. This strategy also suggests the possibility to functionalize aerogel fibers towards even broader applications.

摘要

气凝胶纤维已被视为隔热和可穿戴纺织品领域的后起之秀。然而,气凝胶纤维缺乏功能化限制了它们的应用。在此,我们报道了具有高效水分捕获、热量分配和微波吸收等集成功能的吸湿多孔石墨烯气凝胶纤维(LiCl@HGAFs)。由于高表面积和高吸水动力学,LiCl@HGAFs实现了超过4.15 g/g的吸水能力。此外,该吸附剂可以通过光热和电热方法进行再生。伴随着水的吸附和解吸,LiCl@HGAFs经历了一个高效的传热过程,储热能力为6.93 kJ/g。加热和冷却模式下的性能系数分别可达1.72和0.70。值得注意的是,含有水分的LiCl@HGAFs表现出9.69 GHz带宽的宽频微波吸收、良好的阻抗匹配以及585的高衰减常数。鉴于这些发现,多功能LiCl@HGAFs为集水、热量分配和微波吸收应用开辟了一条途径。该策略还表明了使气凝胶纤维功能化以实现更广泛应用的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8656/8907192/2865b4278ad0/41467_2022_28906_Fig1_HTML.jpg

相似文献

3
Macro-porous structured aerogel with enhanced ab/desorption kinetics for sorption-based atmospheric water harvesting.
J Colloid Interface Sci. 2024 Feb 15;656:466-473. doi: 10.1016/j.jcis.2023.11.128. Epub 2023 Nov 23.
4
Facile and efficient chitosan-based hygroscopic aerogel for air dehumidification.
Int J Biol Macromol. 2023 Nov 1;251:126191. doi: 10.1016/j.ijbiomac.2023.126191. Epub 2023 Aug 12.
5
Robust Silk Fibroin/Graphene Oxide Aerogel Fiber for Radiative Heating Textiles.
ACS Appl Mater Interfaces. 2020 Apr 1;12(13):15726-15736. doi: 10.1021/acsami.0c01330. Epub 2020 Mar 18.
6
Robust and Flame-Retardant Zylon Aerogel Fibers for Wearable Thermal Insulation and Sensing in Harsh Environment.
Adv Mater. 2024 Feb;36(6):e2310023. doi: 10.1002/adma.202310023. Epub 2023 Dec 6.
7
The Rising Aerogel Fibers: Status, Challenges, and Opportunities.
Adv Sci (Weinh). 2023 Mar;10(9):e2205762. doi: 10.1002/advs.202205762. Epub 2023 Jan 19.
10
Facile Preparation of Continuous and Porous Polyimide Aerogel Fibers for Multifunctional Applications.
ACS Appl Mater Interfaces. 2021 Mar 3;13(8):10416-10427. doi: 10.1021/acsami.0c21842. Epub 2021 Feb 17.

引用本文的文献

1
Recent Advances in Metal-Organic Frameworks for Electromagnetic Wave Absorption.
Research (Wash D C). 2025 Sep 8;8:0876. doi: 10.34133/research.0876. eCollection 2025.
2
High-adaptability refrigeration under extreme temperatures in summer enabled by metal-organic framework.
Fundam Res. 2023 Dec 7;5(4):1688-1697. doi: 10.1016/j.fmre.2023.11.009. eCollection 2025 Jul.
4
Robust Mix-Charged Polyzwitterionic Hydrogels for Ultra-Efficient Atmospheric Water Harvesting and Evaporative Cooling.
Adv Mater. 2025 Aug;37(33):e2505279. doi: 10.1002/adma.202505279. Epub 2025 May 30.
5
Electromagnetic Functions Modulation of Recycled By-Products by Heterodimensional Structure.
Nanomicro Lett. 2025 Feb 6;17(1):137. doi: 10.1007/s40820-025-01659-7.
6
Anisotropic honeycomb stack metamaterials of graphene for ultrawideband terahertz absorption.
Nanophotonics. 2023 Nov 6;12(23):4319-4328. doi: 10.1515/nanoph-2023-0500. eCollection 2023 Nov.

本文引用的文献

2
Defective Zr-Fumarate MOFs Enable High-Efficiency Adsorption Heat Allocations.
ACS Appl Mater Interfaces. 2021 Jan 13;13(1):1723-1734. doi: 10.1021/acsami.0c15901. Epub 2021 Jan 4.
4
Reaction-Spun Transparent Silica Aerogel Fibers.
ACS Nano. 2020 Sep 22;14(9):11919-11928. doi: 10.1021/acsnano.0c05016. Epub 2020 Sep 14.
5
Additive manufacturing of silica aerogels.
Nature. 2020 Aug;584(7821):387-392. doi: 10.1038/s41586-020-2594-0. Epub 2020 Aug 19.
6
Super hygroscopic nanofibrous membrane-based moisture pump for solar-driven indoor dehumidification.
Nat Commun. 2020 Jul 3;11(1):3302. doi: 10.1038/s41467-020-17118-3.
7
Robust Silk Fibroin/Graphene Oxide Aerogel Fiber for Radiative Heating Textiles.
ACS Appl Mater Interfaces. 2020 Apr 1;12(13):15726-15736. doi: 10.1021/acsami.0c01330. Epub 2020 Mar 18.
8
Ultra-broadband and tunable saline water-based absorber in microwave regime.
Opt Express. 2020 Feb 17;28(4):5306-5316. doi: 10.1364/OE.382719.
9
Nanofibrous Kevlar Aerogel Threads for Thermal Insulation in Harsh Environments.
ACS Nano. 2019 May 28;13(5):5703-5711. doi: 10.1021/acsnano.9b01094. Epub 2019 May 6.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验