Suppr超能文献

通过遗传算法深入了解具有 Cantor 分形障碍物的微混合器。

New insights into the micromixer with Cantor fractal obstacles through genetic algorithm.

机构信息

College of Transportation, Ludong University, Yantai, 264025, Shandong, China.

Faculty of Mechanical Engineering and Automation, Liaoning University of Technology, Jinzhou, 121001, Liaoning, China.

出版信息

Sci Rep. 2022 Mar 9;12(1):4162. doi: 10.1038/s41598-022-08144-w.

Abstract

This work is mainly to combine fractal principle with multi-objective genetic algorithm, and the multi-objective optimization of the Cantor fractal baffle micromixer is carried out. At different Reynolds numbers (Res), the three-dimensional Navier-Stokes equation is employed to numerically analyze the fluid flow and mixing in the microchannel. We choose the ratio of the three parameters associated with the geometry of the micromixer as design variables, and take the mixing index and pressure drop at the outlet of the micromixer as two objective functions for optimization. For the parameter study of the design space, the Latin hypercube sampling (LHS) method is used as an experimental design technique, and it is used to select design points in the design space. We use the proxy modeling of the response surface analysis (RSA) to approximate the objective function. The genetic algorithm is used to get the Pareto optimal frontier of the micromixer. K-means clustering is used to classify the optimal solution set, and we select representative design variables from it. Through multi-objective optimization, when Re = 1 and 10, the optimized mixing efficiency of the micromixer increased by 20.59% and 14.07% compared with the reference design, respectively. And we also prove that this multi-objective optimization method is applicable to any Res.

摘要

这项工作主要是将分形原理与多目标遗传算法相结合,对 Cantor 分形折流微混合器进行多目标优化。在不同的雷诺数(Res)下,采用三维纳维-斯托克斯方程对微通道内的流体流动和混合进行数值分析。我们选择与微混合器几何形状相关的三个参数的比值作为设计变量,并将混合指数和微混合器出口处的压降作为两个目标函数进行优化。对于设计空间的参数研究,采用拉丁超立方抽样(LHS)方法作为实验设计技术,用于在设计空间中选择设计点。我们使用响应面分析(RSA)的代理模型来近似目标函数。遗传算法用于获得微混合器的 Pareto 最优前沿。使用 K-均值聚类对最优解集进行分类,并从中选择有代表性的设计变量。通过多目标优化,当 Re = 1 和 10 时,与参考设计相比,微混合器的优化混合效率分别提高了 20.59%和 14.07%。并且我们还证明了这种多目标优化方法适用于任何 Res。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0616/8907327/12e080368159/41598_2022_8144_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验