文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

多个结构参数对带有挡板、障碍物和间隙的微混合器性能的影响。

Effect of Multiple Structural Parameters on the Performance of a Micromixer with Baffles, Obstacles, and Gaps.

作者信息

Nai Jiacheng, Zhang Feng, Dong Peng, Bai Fan, Fu Ting, Wang Jiangbo, Ge Anle

机构信息

Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.

Key Laboratory of Metallurgical Equipment and Control Technology, Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China.

出版信息

Micromachines (Basel). 2023 Sep 7;14(9):1750. doi: 10.3390/mi14091750.


DOI:10.3390/mi14091750
PMID:37763914
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10534435/
Abstract

As an essential component of chip laboratories and microfluidic systems, micromixers are widely used in fields such as chemical and biological analysis. In this work, a square cavity micromixer with multiple structural parameters (baffles, obstacles, and gaps) has been proposed to further improve the mixing performance of micromixers. This study examines the comprehensive effects of various structural parameters on mixing performance. The impact of baffle length, obstacle length-to-width ratio, gap width, and obstacle shape on the mixing index and pressure drop were numerically studied at different Reynolds numbers (). The results show that the mixing index increases with baffle length and obstacle length-to-width ratio and decreases with gap width at = 0.1, 1, 10, 20, 40, and 60. The mixing index can reach more than 0.98 in the range of ≥ 20 when the baffle length is 150 μm, the obstacle length-to-width ratio is 600/100, and the gap width is 200 μm. The pressure drop of the microchannel is proportional to baffle length and obstacle length-to-width ratio. Combining baffles and obstacles can further improve the mixing performance of square cavity micromixers. A longer baffle length, larger obstacle length-to-width ratio, narrower gap width, and a more symmetrical structure are conducive to improving the mixing index. However, the impact of pressure drop must also be considered comprehensively. The research results provide references and new ideas for passive micromixer structural design.

摘要

作为芯片实验室和微流控系统的重要组成部分,微混合器广泛应用于化学和生物分析等领域。在这项工作中,提出了一种具有多个结构参数(挡板、障碍物和间隙)的方形腔微混合器,以进一步提高微混合器的混合性能。本研究考察了各种结构参数对混合性能的综合影响。在不同雷诺数()下,对挡板长度、障碍物长宽比、间隙宽度和障碍物形状对混合指数和压降的影响进行了数值研究。结果表明,在雷诺数为0.1、1、10、20、40和60时,混合指数随挡板长度和障碍物长宽比的增加而增大,随间隙宽度的减小而减小。当挡板长度为150μm、障碍物长宽比为600/100、间隙宽度为200μm时,在雷诺数≥20的范围内,混合指数可达到0.98以上。微通道的压降与挡板长度和障碍物长宽比成正比。结合挡板和障碍物可以进一步提高方形腔微混合器的混合性能。较长的挡板长度、较大的障碍物长宽比、较窄的间隙宽度和更对称的结构有利于提高混合指数。然而,也必须综合考虑压降的影响。研究结果为被动式微混合器的结构设计提供了参考和新思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c7d/10534435/ea231d373713/micromachines-14-01750-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c7d/10534435/fd439ff4f61f/micromachines-14-01750-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c7d/10534435/6bfbb745c623/micromachines-14-01750-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c7d/10534435/342935b25f1d/micromachines-14-01750-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c7d/10534435/1fab8cf604bf/micromachines-14-01750-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c7d/10534435/c93859d65b13/micromachines-14-01750-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c7d/10534435/2b5066e0f7a3/micromachines-14-01750-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c7d/10534435/70f38a4b0b0d/micromachines-14-01750-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c7d/10534435/ea662eb5503c/micromachines-14-01750-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c7d/10534435/11bd8c5e8527/micromachines-14-01750-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c7d/10534435/8166433a8a9e/micromachines-14-01750-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c7d/10534435/66e28e8af87e/micromachines-14-01750-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c7d/10534435/4f1fe5113383/micromachines-14-01750-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c7d/10534435/5098288a29ec/micromachines-14-01750-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c7d/10534435/ef9a4ae2ba8f/micromachines-14-01750-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c7d/10534435/cdf305cbfc3a/micromachines-14-01750-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c7d/10534435/46b98a76b1f8/micromachines-14-01750-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c7d/10534435/ea231d373713/micromachines-14-01750-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c7d/10534435/fd439ff4f61f/micromachines-14-01750-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c7d/10534435/6bfbb745c623/micromachines-14-01750-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c7d/10534435/342935b25f1d/micromachines-14-01750-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c7d/10534435/1fab8cf604bf/micromachines-14-01750-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c7d/10534435/c93859d65b13/micromachines-14-01750-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c7d/10534435/2b5066e0f7a3/micromachines-14-01750-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c7d/10534435/70f38a4b0b0d/micromachines-14-01750-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c7d/10534435/ea662eb5503c/micromachines-14-01750-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c7d/10534435/11bd8c5e8527/micromachines-14-01750-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c7d/10534435/8166433a8a9e/micromachines-14-01750-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c7d/10534435/66e28e8af87e/micromachines-14-01750-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c7d/10534435/4f1fe5113383/micromachines-14-01750-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c7d/10534435/5098288a29ec/micromachines-14-01750-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c7d/10534435/ef9a4ae2ba8f/micromachines-14-01750-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c7d/10534435/cdf305cbfc3a/micromachines-14-01750-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c7d/10534435/46b98a76b1f8/micromachines-14-01750-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c7d/10534435/ea231d373713/micromachines-14-01750-g017.jpg

相似文献

[1]
Effect of Multiple Structural Parameters on the Performance of a Micromixer with Baffles, Obstacles, and Gaps.

Micromachines (Basel). 2023-9-7

[2]
Influence of Structural Parameters on the Performance of an Asymmetric Rhombus Micromixer with Baffles.

Micromachines (Basel). 2023-2-26

[3]
Mixing Performance Analysis and Optimal Design of a Novel Passive Baffle Micromixer.

Micromachines (Basel). 2024-1-26

[4]
Numerical and Experimental Investigation on a "Tai Chi"-Shaped Planar Passive Micromixer.

Micromachines (Basel). 2023-7-13

[5]
An efficient micromixer based on multidirectional vortices due to baffles and channel curvature.

Biomicrofluidics. 2011-2-16

[6]
Modeling and simulation of a split and recombination-based passive micromixer with vortex-generating mixing units.

Heliyon. 2023-3-24

[7]
Mixing Performance of a Planar Asymmetric Contraction-and-Expansion Micromixer.

Micromachines (Basel). 2022-8-25

[8]
Asymmetrical Split-and-Recombine Micromixer with Baffles.

Micromachines (Basel). 2019-12-3

[9]
A Review of Pressure Drop and Mixing Characteristics in Passive Mixers Involving Miscible Liquids.

Micromachines (Basel). 2024-5-24

[10]
A cost-effective serpentine micromixer utilizing ellipse curve.

Anal Chim Acta. 2021-4-22

引用本文的文献

[1]
Mixing Performance Analysis and Optimal Design of a Novel Passive Baffle Micromixer.

Micromachines (Basel). 2024-1-26

本文引用的文献

[1]
Influence of Structural Parameters on the Performance of an Asymmetric Rhombus Micromixer with Baffles.

Micromachines (Basel). 2023-2-26

[2]
Assembly of Fluorescent Polymer Nanoparticles Using Different Microfluidic Mixers.

Langmuir. 2022-7-5

[3]
Phase-controlled field-effect micromixing using AC electroosmosis.

Microsyst Nanoeng. 2020-7-27

[4]
Ultrafast star-shaped acoustic micromixer for high throughput nanoparticle synthesis.

Lab Chip. 2020-1-3

[5]
Versatile Microfluidic Mixing Platform for High- and Low-Viscosity Liquids via Acoustic and Chemical Microbubbles.

Micromachines (Basel). 2019-12-5

[6]
Application of microfluidic chip technology in pharmaceutical analysis: A review.

J Pharm Anal. 2019-8

[7]
Versatile platform for performing protocols on a chip utilizing surface acoustic wave (SAW) driven mixing.

Lab Chip. 2019-1-15

[8]
A Rapid Micromixer for Centrifugal Microfluidic Platforms.

Micromachines (Basel). 2016-5-10

[9]
A Review on Micromixers.

Micromachines (Basel). 2017-9-11

[10]
A novel micromixer based on the alternating current-flow field effect transistor.

Lab Chip. 2016-12-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索