Nai Jiacheng, Zhang Feng, Dong Peng, Bai Fan, Fu Ting, Wang Jiangbo, Ge Anle
Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
Key Laboratory of Metallurgical Equipment and Control Technology, Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China.
Micromachines (Basel). 2023 Sep 7;14(9):1750. doi: 10.3390/mi14091750.
As an essential component of chip laboratories and microfluidic systems, micromixers are widely used in fields such as chemical and biological analysis. In this work, a square cavity micromixer with multiple structural parameters (baffles, obstacles, and gaps) has been proposed to further improve the mixing performance of micromixers. This study examines the comprehensive effects of various structural parameters on mixing performance. The impact of baffle length, obstacle length-to-width ratio, gap width, and obstacle shape on the mixing index and pressure drop were numerically studied at different Reynolds numbers (). The results show that the mixing index increases with baffle length and obstacle length-to-width ratio and decreases with gap width at = 0.1, 1, 10, 20, 40, and 60. The mixing index can reach more than 0.98 in the range of ≥ 20 when the baffle length is 150 μm, the obstacle length-to-width ratio is 600/100, and the gap width is 200 μm. The pressure drop of the microchannel is proportional to baffle length and obstacle length-to-width ratio. Combining baffles and obstacles can further improve the mixing performance of square cavity micromixers. A longer baffle length, larger obstacle length-to-width ratio, narrower gap width, and a more symmetrical structure are conducive to improving the mixing index. However, the impact of pressure drop must also be considered comprehensively. The research results provide references and new ideas for passive micromixer structural design.
作为芯片实验室和微流控系统的重要组成部分,微混合器广泛应用于化学和生物分析等领域。在这项工作中,提出了一种具有多个结构参数(挡板、障碍物和间隙)的方形腔微混合器,以进一步提高微混合器的混合性能。本研究考察了各种结构参数对混合性能的综合影响。在不同雷诺数()下,对挡板长度、障碍物长宽比、间隙宽度和障碍物形状对混合指数和压降的影响进行了数值研究。结果表明,在雷诺数为0.1、1、10、20、40和60时,混合指数随挡板长度和障碍物长宽比的增加而增大,随间隙宽度的减小而减小。当挡板长度为150μm、障碍物长宽比为600/100、间隙宽度为200μm时,在雷诺数≥20的范围内,混合指数可达到0.98以上。微通道的压降与挡板长度和障碍物长宽比成正比。结合挡板和障碍物可以进一步提高方形腔微混合器的混合性能。较长的挡板长度、较大的障碍物长宽比、较窄的间隙宽度和更对称的结构有利于提高混合指数。然而,也必须综合考虑压降的影响。研究结果为被动式微混合器的结构设计提供了参考和新思路。
Micromachines (Basel). 2023-9-7
Micromachines (Basel). 2023-2-26
Micromachines (Basel). 2024-1-26
Micromachines (Basel). 2023-7-13
Biomicrofluidics. 2011-2-16
Micromachines (Basel). 2022-8-25
Micromachines (Basel). 2019-12-3
Micromachines (Basel). 2024-5-24
Anal Chim Acta. 2021-4-22
Micromachines (Basel). 2024-1-26
Micromachines (Basel). 2023-2-26
Microsyst Nanoeng. 2020-7-27
Micromachines (Basel). 2019-12-5
Micromachines (Basel). 2016-5-10
Micromachines (Basel). 2017-9-11