Suppr超能文献

基因调控 DNA 的进化、可进化性与工程。

The evolution, evolvability and engineering of gene regulatory DNA.

机构信息

Massachusetts Institute of Technology, Cambridge, MA, USA.

Broad Institute of MIT and Harvard, Cambridge, MA, USA.

出版信息

Nature. 2022 Mar;603(7901):455-463. doi: 10.1038/s41586-022-04506-6. Epub 2022 Mar 9.

Abstract

Mutations in non-coding regulatory DNA sequences can alter gene expression, organismal phenotype and fitness. Constructing complete fitness landscapes, in which DNA sequences are mapped to fitness, is a long-standing goal in biology, but has remained elusive because it is challenging to generalize reliably to vast sequence spaces. Here we build sequence-to-expression models that capture fitness landscapes and use them to decipher principles of regulatory evolution. Using millions of randomly sampled promoter DNA sequences and their measured expression levels in the yeast Saccharomyces cerevisiae, we learn deep neural network models that generalize with excellent prediction performance, and enable sequence design for expression engineering. Using our models, we study expression divergence under genetic drift and strong-selection weak-mutation regimes to find that regulatory evolution is rapid and subject to diminishing returns epistasis; that conflicting expression objectives in different environments constrain expression adaptation; and that stabilizing selection on gene expression leads to the moderation of regulatory complexity. We present an approach for using such models to detect signatures of selection on expression from natural variation in regulatory sequences and use it to discover an instance of convergent regulatory evolution. We assess mutational robustness, finding that regulatory mutation effect sizes follow a power law, characterize regulatory evolvability, visualize promoter fitness landscapes, discover evolvability archetypes and illustrate the mutational robustness of natural regulatory sequence populations. Our work provides a general framework for designing regulatory sequences and addressing fundamental questions in regulatory evolution.

摘要

非编码调控 DNA 序列中的突变可以改变基因表达、生物个体表型和适应度。构建完整的适应度景观,即将 DNA 序列映射到适应度,是生物学中长期以来的目标,但由于难以可靠地推广到广阔的序列空间,因此仍然难以实现。在这里,我们构建了可以捕捉适应度景观的序列到表达模型,并利用它们来揭示调控进化的原理。我们使用了数百万个随机采样的启动子 DNA 序列及其在酵母酿酒酵母中的测量表达水平,学习了深度神经网络模型,这些模型具有出色的预测性能,并且可以进行序列设计以进行表达工程。使用我们的模型,我们研究了遗传漂变和强选择弱突变条件下的表达分歧,发现调控进化是快速的,并受到递减回报的上位性限制;不同环境中的表达目标冲突限制了表达适应;以及基因表达的稳定选择导致调节复杂性的缓和。我们提出了一种使用此类模型从调控序列中的自然变异中检测表达选择的方法,并使用它发现了一个趋同调控进化的实例。我们评估了突变稳健性,发现调节突变效应大小遵循幂律,表征了调节可进化性,可视化了启动子适应度景观,发现了可进化原型,并说明了自然调节序列群体的突变稳健性。我们的工作为设计调控序列提供了一个通用框架,并解决了调控进化中的基本问题。

相似文献

1
The evolution, evolvability and engineering of gene regulatory DNA.基因调控 DNA 的进化、可进化性与工程。
Nature. 2022 Mar;603(7901):455-463. doi: 10.1038/s41586-022-04506-6. Epub 2022 Mar 9.
2
The mutation matrix and the evolution of evolvability.突变矩阵与进化能力的演变。
Evolution. 2007 Apr;61(4):727-45. doi: 10.1111/j.1558-5646.2007.00071.x.
4
Genetic properties influencing the evolvability of gene expression.影响基因表达进化能力的遗传特性。
Science. 2007 Jul 6;317(5834):118-21. doi: 10.1126/science.1140247. Epub 2007 May 24.
6
Evolution of evolvability in gene regulatory networks.基因调控网络中可进化性的进化
PLoS Comput Biol. 2008 Jul 11;4(7):e1000112. doi: 10.1371/journal.pcbi.1000112.
8
Effect of robustness on selection of a mutation-rate regulating gene.稳健性对突变率调节基因选择的影响。
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Sep;84(3 Pt 1):031925. doi: 10.1103/PhysRevE.84.031925. Epub 2011 Sep 27.

引用本文的文献

本文引用的文献

6
Molecular and evolutionary processes generating variation in gene expression.基因表达变异的分子和进化过程。
Nat Rev Genet. 2021 Apr;22(4):203-215. doi: 10.1038/s41576-020-00304-w. Epub 2020 Dec 2.
8
10
Dense and pleiotropic regulatory information in a developmental enhancer.发育增强子中密集且多功能的调控信息。
Nature. 2020 Nov;587(7833):235-239. doi: 10.1038/s41586-020-2816-5. Epub 2020 Oct 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验