Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Nat Neurosci. 2020 Dec;23(12):1509-1521. doi: 10.1038/s41593-020-00740-1. Epub 2020 Nov 16.
Complex brain disorders are highly heritable and arise from a complex polygenic risk architecture. Many disease-associated loci are found in non-coding regions that house regulatory elements. These elements influence the transcription of target genes-many of which demonstrate cell-type-specific expression patterns-and thereby affect phenotypically relevant molecular pathways. Thus, cell-type-specificity must be considered when prioritizing candidate risk loci, variants and target genes. This Review discusses the use of high-throughput assays in human induced pluripotent stem cell-based neurodevelopmental models to probe genetic risk in a cell-type- and patient-specific manner. The application of massively parallel reporter assays in human induced pluripotent stem cells can characterize the human regulome and test the transcriptional responses of putative regulatory elements. Parallel CRISPR-based screens can further functionally dissect this genetic regulatory architecture. The integration of these emerging technologies could decode genetic risk into medically actionable information, thereby improving genetic diagnosis and identifying novel points of therapeutic intervention.
复杂的脑部疾病具有高度遗传性,是由复杂的多基因风险结构引起的。许多与疾病相关的基因座位于非编码区域,这些区域包含调控元件。这些元件影响目标基因的转录——其中许多基因表现出细胞类型特异性的表达模式——从而影响表型相关的分子途径。因此,在优先考虑候选风险基因座、变体和靶基因时,必须考虑细胞类型特异性。这篇综述讨论了在基于人诱导多能干细胞的神经发育模型中使用高通量测定法,以细胞类型和患者特异性的方式探测遗传风险。大规模平行报告基因测定法在人诱导多能干细胞中的应用可以描述人类调控组,并测试假定调控元件的转录反应。基于 CRISPR 的平行筛选可以进一步对这种遗传调控结构进行功能剖析。这些新兴技术的整合可以将遗传风险转化为可用于医疗的信息,从而改善遗传诊断并确定新的治疗干预点。