Suppr超能文献

直肠神经内分泌肿瘤的粪便微生物组和代谢特征。

Faecal microbiome and metabolic signatures in rectal neuroendocrine tumors.

机构信息

Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China.

The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China.

出版信息

Theranostics. 2022 Jan 31;12(5):2015-2027. doi: 10.7150/thno.66464. eCollection 2022.

Abstract

The prevalence of rectal neuroendocrine tumors (RNET) has increased substantially over the past decades. Little is known on mechanistic alteration in the pathogenesis of such disease. We postulate that perturbations of human gut microbiome-metabolome interface influentially affect the development of RNET. The study aims to characterize the composition and function of faecal microbiome and metabolites in RNET individuals. We performed deep shotgun metagenomic sequencing and untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomic profiling of faecal samples from the discovery cohort (18 RNET patients, 40 controls), and validated the microbiome and metabolite-based classifiers in an independent cohort (15 RNET participants, 19 controls). We uncovered a dysbiotic gut ecological microenvironment in RNET patients, characterized by aberrant depletion and attenuated connection of microbial species, and abnormally aggregated lipids and lipid-like molecules. Functional characterization based on our and Human Project Unified Metabolic Analysis Network 2 (HUMAnN2) pipelines further indicated a nutrient deficient gut microenvironment in RNET individuals, evidenced by diminished activities such as energy metabolism, vitamin biosynthesis and transportation. By integrating these data, we revealed 291 robust associations between representative differentially abundant taxonomic species and metabolites, indicating a tight interaction of gut microbiome with metabolites in RNET pathogenesis. Finally, we identified a cluster of gut microbiome and metabolite-based signatures, and replicated them in an independent cohort, showing accurate prediction of such neoplasm from healthy people. Our current study is the first to comprehensively characterize the perturbed interface of gut microbiome and metabolites in RNET patients, which may provide promising targets for microbiome-based diagnostics and therapies for this disorder.

摘要

过去几十年中,直肠神经内分泌肿瘤(RNET)的患病率显著增加。对于这种疾病发病机制中的机制改变知之甚少。我们假设人类肠道微生物组-代谢组界面的干扰会强烈影响 RNET 的发展。本研究旨在描述 RNET 个体粪便微生物组和代谢物的组成和功能。我们对发现队列(18 名 RNET 患者,40 名对照)的粪便样本进行了深度 shotgun 宏基因组测序和非靶向液相色谱-质谱(LC-MS)代谢组学分析,并在独立队列(15 名 RNET 参与者,19 名对照)中验证了基于微生物组和代谢物的分类器。我们发现 RNET 患者的肠道生态微环境失调,表现为微生物物种的异常缺失和连接减弱,以及异常聚集的脂质和类脂分子。基于我们的和人类项目统一代谢分析网络 2(HUMAnN2)管道的功能特征进一步表明,RNET 个体的肠道微环境存在营养缺乏,表现在能量代谢、维生素生物合成和运输等活性降低。通过整合这些数据,我们揭示了代表差异丰度分类物种和代谢物之间的 291 个稳健关联,表明在 RNET 发病机制中,肠道微生物组与代谢物之间存在紧密的相互作用。最后,我们确定了一组基于肠道微生物组和代谢物的特征,并在独立队列中进行了复制,显示了从健康人群中准确预测这种肿瘤的能力。我们目前的研究首次全面描述了 RNET 患者肠道微生物组和代谢物失调的界面,这可能为基于微生物组的该疾病的诊断和治疗提供有希望的靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a22/8899573/e71f40036711/thnov12p2015g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验