文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

膀胱癌治疗与预后中铁代谢图谱的识别与定量分析

Identification and Quantification of Iron Metabolism Landscape on Therapy and Prognosis in Bladder Cancer.

作者信息

Song Xiaodong, Xin Sheng, Zhang Yucong, Mao Jiaquan, Duan Chen, Cui Kai, Chen Liang, Li Fan, Liu Zheng, Wang Tao, Liu Jihong, Liu Xiaming, Song Wen

机构信息

Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Department of Geriatric, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

出版信息

Front Cell Dev Biol. 2022 Feb 21;10:810272. doi: 10.3389/fcell.2022.810272. eCollection 2022.


DOI:10.3389/fcell.2022.810272
PMID:35265613
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8899848/
Abstract

The morbidity of bladder cancer (BLCA) is high and has gradually elevated in recent years. BLCA is also characterized by high recurrence and high invasiveness. Due to the drug resistance and lack of effective prognostic indicators, the prognosis of patients with BLCA is greatly affected. Iron metabolism is considered to be a pivot of tumor occurrence, progression, and tumor microenvironment (TME) in tumors, but there is little research in BLCA. Herein, we used univariate COX regression analysis to screen 95 prognosis-related iron metabolism-related genes (IMRGs) according to transcription RNA sequencing and prognosis information of the Cancer Genome Atlas (TCGA) database. TCGA-BLCA cohort was clustered into four distinct iron metabolism patterns (C1, C2, C3, and C4) by the non-negative matrix factorization (NMF) algorithm. Survival analysis showed that C1 and C3 patterns had a better prognosis. Gene set variant analysis (GSVA) revealed that C2 and C4 patterns were mostly enriched in carcinogenic and immune activation pathways. ESTIMATE and single sample gene set enrichment analysis (ssGSEA) also confirmed the level of immune cell infiltration in C2 and C4 patterns was significantly elevated. Moreover, the immune checkpoint genes in C2 and C4 patterns were observably overexpressed. Studies on somatic mutations showed that the tumor mutation burden (TMB) of C1 and C4 patterns was the lowest. Chemotherapy response assessment revealed that C2 pattern was the most sensitive to chemotherapy, while C3 pattern was the most insensitive. Then we established the IMRG prognosis signature (IMRGscore) by the least absolute shrinkage and selection operator (LASSO), including 13 IMRGs (TCIRG1, CTSE, ATP6V0A1, CYP2C8, RNF19A, CYP4Z1, YPEL5, PLOD1, BMP6, CAST, SCD, IFNG, and ASIC3). We confirmed IMRGscore could be utilized as an independent prognostic indicator. Therefore, validation and quantification of iron metabolism landscapes will help us comprehend the formation of the BLCA immunosuppressive microenvironment, guide the selection of chemotherapeutic drugs and immunotherapy, and predict the prognosis of patients.

摘要

膀胱癌(BLCA)的发病率较高,且近年来呈逐渐上升趋势。BLCA还具有高复发率和高侵袭性的特点。由于耐药性以及缺乏有效的预后指标,BLCA患者的预后受到极大影响。铁代谢被认为是肿瘤发生、发展及肿瘤微环境(TME)的关键因素,但在BLCA方面的研究较少。在此,我们根据癌症基因组图谱(TCGA)数据库的转录RNA测序和预后信息,采用单变量COX回归分析筛选出95个与预后相关的铁代谢相关基因(IMRGs)。通过非负矩阵分解(NMF)算法将TCGA - BLCA队列聚类为四种不同的铁代谢模式(C1、C2、C3和C4)。生存分析表明,C1和C3模式具有较好的预后。基因集变异分析(GSVA)显示,C2和C4模式大多富集于致癌和免疫激活途径。ESTIMATE和单样本基因集富集分析(ssGSEA)也证实,C2和C4模式中免疫细胞浸润水平显著升高。此外,C2和C4模式中的免疫检查点基因明显过表达。体细胞突变研究表明,C1和C4模式的肿瘤突变负担(TMB)最低。化疗反应评估显示,C2模式对化疗最敏感,而C3模式最不敏感。然后我们通过最小绝对收缩和选择算子(LASSO)建立了IMRG预后特征(IMRGscore),包括13个IMRGs(TCIRG1、CTSE、ATP6V0A1、CYP2C8、RNF19A、CYP4Z1、YPEL5、PLOD1、BMP6、CAST、SCD、IFNG和ASIC3)。我们证实IMRGscore可作为独立的预后指标。因此,铁代谢格局的验证和量化将有助于我们理解BLCA免疫抑制微环境的形成,指导化疗药物和免疫治疗的选择,并预测患者的预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af02/8899848/e7189597be38/fcell-10-810272-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af02/8899848/adb9e1e4aea3/fcell-10-810272-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af02/8899848/02060a7bfbc2/fcell-10-810272-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af02/8899848/7f68494f1067/fcell-10-810272-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af02/8899848/e92e6f6e0983/fcell-10-810272-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af02/8899848/9f3fab873ab6/fcell-10-810272-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af02/8899848/f921de7ed45a/fcell-10-810272-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af02/8899848/17b3d3410ce3/fcell-10-810272-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af02/8899848/18bbd69589c3/fcell-10-810272-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af02/8899848/a3dbf73aabd1/fcell-10-810272-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af02/8899848/da086c9db930/fcell-10-810272-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af02/8899848/d31547f8caec/fcell-10-810272-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af02/8899848/e7189597be38/fcell-10-810272-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af02/8899848/adb9e1e4aea3/fcell-10-810272-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af02/8899848/02060a7bfbc2/fcell-10-810272-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af02/8899848/7f68494f1067/fcell-10-810272-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af02/8899848/e92e6f6e0983/fcell-10-810272-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af02/8899848/9f3fab873ab6/fcell-10-810272-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af02/8899848/f921de7ed45a/fcell-10-810272-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af02/8899848/17b3d3410ce3/fcell-10-810272-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af02/8899848/18bbd69589c3/fcell-10-810272-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af02/8899848/a3dbf73aabd1/fcell-10-810272-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af02/8899848/da086c9db930/fcell-10-810272-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af02/8899848/d31547f8caec/fcell-10-810272-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af02/8899848/e7189597be38/fcell-10-810272-g012.jpg

相似文献

[1]
Identification and Quantification of Iron Metabolism Landscape on Therapy and Prognosis in Bladder Cancer.

Front Cell Dev Biol. 2022-2-21

[2]
Identification of a novel signature based on unfolded protein response-related gene for predicting prognosis in bladder cancer.

Hum Genomics. 2021-12-20

[3]
Identification of a tumor microenvironment-related seven-gene signature for predicting prognosis in bladder cancer.

BMC Cancer. 2021-6-10

[4]
Development and validation of a novel lipid metabolism-related gene prognostic signature and candidate drugs for patients with bladder cancer.

Lipids Health Dis. 2021-10-27

[5]
Tumor Expression Profile Analysis Developed and Validated a Prognostic Model Based on Immune-Related Genes in Bladder Cancer.

Front Genet. 2021-8-27

[6]
Development of a prognostic model to predict BLCA based on anoikis-related gene signature: preliminary findings.

BMC Urol. 2023-12-4

[7]
Comprehensive characterization of endoplasmic reticulum stress in bladder cancer revealing the association with tumor immune microenvironment and prognosis.

Front Genet. 2023-4-7

[8]
Identification of a Novel PPAR Signature for Predicting Prognosis, Immune Microenvironment, and Chemotherapy Response in Bladder Cancer.

PPAR Res. 2021-12-30

[9]
An effective N6-methyladenosine-related long non-coding RNA prognostic signature for predicting the prognosis of patients with bladder cancer.

BMC Cancer. 2021-11-21

[10]
Identification of a Novel Tumor Microenvironment Prognostic Signature for Bladder Urothelial Carcinoma.

Front Oncol. 2022-3-1

引用本文的文献

[1]
Iron and Cancer.

Adv Exp Med Biol. 2025

[2]
ADME gene-driven prognostic model for bladder cancer: a breakthrough in predicting survival and personalized treatment.

Hereditas. 2025-3-19

[3]
Development and validation of a novel liquid-liquid phase separation gene signature for bladder cancer.

Sci Rep. 2024-9-29

[4]
Identification of bladder cancer subtypes and predictive signature for prognosis, immune features, and immunotherapy based on immune checkpoint genes.

Sci Rep. 2024-6-23

[5]
Development and verification of a newly established cuproptosis-associated lncRNA model for predicting overall survival in uterine corpus endometrial carcinoma.

Transl Cancer Res. 2023-8-31

[6]
Construction of a prediction model for prognosis of bladder cancer based on the expression of ion channel-related genes.

Zhejiang Da Xue Xue Bao Yi Xue Ban. 2023-8-25

[7]
A novel platelet risk score for stratifing the tumor immunophenotypes, treatment responses and prognosis in bladder carcinoma: results from real-world cohorts.

Front Pharmacol. 2023-5-4

[8]
Identification of a New Prediction Model for Bladder Cancer Related to Immune Functions and Chemotherapy Using Gene Sets of Biological Processes.

Biomed Res Int. 2022

本文引用的文献

[1]
Ring finger protein 19A is overexpressed in non-small cell lung cancer and mediates p53 ubiquitin-degradation to promote cancer growth.

J Cell Mol Med. 2021-8

[2]
Profiling of CYP4Z1 and CYP1B1 expression in bladder cancers.

Sci Rep. 2021-3-10

[3]
Calpain-calpastatin system and cancer progression.

Biol Rev Camb Philos Soc. 2021-6

[4]
METTL3/YTHDF2 m6A axis accelerates colorectal carcinogenesis through epigenetically suppressing YPEL5.

Mol Oncol. 2021-8

[5]
Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis.

Proc Natl Acad Sci U S A. 2020-12-8

[6]
CYP2C8 regulated by GAS5/miR-382-3p exerts anti-cancerous properties in liver cancer.

Cancer Biol Ther. 2020-12-1

[7]
Spontaneous mutations in the single gene represent high tumor mutation burden.

NPJ Genom Med. 2020-1-14

[8]
Biomaterial 3D collagen I gel culture model: A novel approach to investigate tumorigenesis and dormancy of bladder cancer cells induced by tumor microenvironment.

Biomaterials. 2020-10

[9]
Ferroptosis and Cancer: Mitochondria Meet the "Iron Maiden" Cell Death.

Cells. 2020-6-20

[10]
European Association of Urology Guidelines on Muscle-invasive and Metastatic Bladder Cancer: Summary of the 2020 Guidelines.

Eur Urol. 2021-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索