Frodi Diana M, Kolk Maarten Z H, Langford Joss, Andersen Tariq O, Knops Reinoud E, Tan Hanno L, Svendsen Jesper H, Tjong Fleur V Y, Diederichsen Soeren Z
Department of Cardiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark.
Department of Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
Cardiovasc Digit Health J. 2021 Oct 13;2(6 Suppl):S11-S20. doi: 10.1016/j.cvdhj.2021.10.002. eCollection 2021 Dec.
Patients with an implantable cardioverter-defibrillator (ICD) are at a high risk of malignant ventricular arrhythmias. The use of remote ICD monitoring, wearable devices, and patient-reported outcomes generate large volumes of potential valuable data. Artificial intelligence-based methods can be used to develop personalized prediction models and improve early-warning systems.
The purpose of this study was to develop an integrated web-based personalized prediction engine for ICD therapy.
This international, multicenter, prospective, observational study consists of 2 phases: (1) a development study and (2) a feasibility study. We plan to enroll 400 participants with an ICD (with or without cardiac resynchronization therapy) on remote monitoring: 300 participants in the development study and 100 in the feasibility study. During 12-month follow-up, electronic health record data, remote monitoring data, accelerometry-assessed physical behavior data, and patient-reported data are collected. By using machine- and deep-learning approaches, a prediction engine is developed to assess the risk probability of ICD therapy (shock and antitachycardia pacing). The feasibility of the prediction engine as a clinical tool, the SafeHeart Platform, is assessed during the feasibility study.
Development study recruitment commenced in 2021. The feasibility study starts in 2022.
SafeHeart is the first study to prospectively collect a multimodal data set to construct a personalized prediction engine for ICD therapy. Moreover, SafeHeart explores the integration and added value of detailed objective accelerometer data in the prediction of clinical events. The translation of the SafeHeart Platform to clinical practice is examined during the feasibility study.
植入式心脏复律除颤器(ICD)患者发生恶性室性心律失常的风险很高。使用远程ICD监测、可穿戴设备以及患者报告的结果会产生大量潜在的有价值数据。基于人工智能的方法可用于开发个性化预测模型并改进预警系统。
本研究的目的是开发一种基于网络的集成式个性化ICD治疗预测引擎。
这项国际多中心前瞻性观察性研究包括两个阶段:(1)一项开发研究和(2)一项可行性研究。我们计划招募400名接受远程监测的ICD患者(无论是否接受心脏再同步治疗):300名参与者参与开发研究,100名参与可行性研究。在12个月的随访期间,收集电子健康记录数据、远程监测数据、加速度计评估的身体行为数据以及患者报告的数据。通过使用机器学习和深度学习方法,开发一个预测引擎来评估ICD治疗(电击和抗心动过速起搏)的风险概率。在可行性研究期间评估预测引擎作为临床工具SafeHeart平台的可行性。
开发研究招募工作于2021年开始。可行性研究于2022年开始。
SafeHeart是第一项前瞻性收集多模态数据集以构建ICD治疗个性化预测引擎的研究。此外,SafeHeart探索了详细客观的加速度计数据在临床事件预测中的整合及附加价值。在可行性研究期间考察SafeHeart平台向临床实践的转化。