Suppr超能文献

双重亲和性红细胞和靶细胞(DART)增强了血管内纳米载体对器官和细胞类型的靶向性。

Dual Affinity to RBCs and Target Cells (DART) Enhances Both Organ- and Cell Type-Targeting of Intravascular Nanocarriers.

机构信息

Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 02138, United States.

出版信息

ACS Nano. 2022 Mar 22;16(3):4666-4683. doi: 10.1021/acsnano.1c11374. Epub 2022 Mar 10.

Abstract

A long-standing goal of nanomedicine is to improve a drug's benefit by loading it into a nanocarrier that homes solely to a specific target cell and organ. Unfortunately, nanocarriers usually end up with only a small percentage of the injected dose (% ID) in the target organ, due largely to clearance by the liver and spleen. Further, cell-type-specific targeting is rarely achieved without reducing target organ accumulation. To solve these problems, we introduce DART (ual ffinity to BCs and arget cells), in which nanocarriers are conjugated to two affinity ligands, one binding red blood cells and one binding a target cell (here, pulmonary endothelial cells). DART nanocarriers first bind red blood cells and then transfer to the target organ's endothelial cells as the bound red blood cells squeeze through capillaries. We show that within minutes after intravascular injection in mice nearly 70% ID of DART nanocarriers accumulate in the target organ (lungs), more than doubling the % ID ceiling achieved by a multitude of prior technologies, finally achieving a majority % ID in a target organ. Humanized DART nanocarriers in perfused human lungs recapitulate this phenomenon. Furthermore, DART enhances the selectivity of delivery to target endothelial cells over local phagocytes within the target organ by 6-fold. DART's marked improvement in both organ- and cell-type targeting may thus be helpful in localizing drugs for a multitude of medical applications.

摘要

纳米医学的一个长期目标是通过将药物装入仅靶向特定靶细胞和器官的纳米载体来提高药物的疗效。不幸的是,由于肝脏和脾脏的清除作用,纳米载体通常只能将注射剂量的一小部分(%ID)带入靶器官。此外,如果不减少靶器官的积累,通常很难实现细胞类型特异性靶向。为了解决这些问题,我们引入了 DART(BC 和靶细胞的双重亲和力),其中纳米载体与两种亲和配体结合,一种与红细胞结合,另一种与靶细胞(这里是肺内皮细胞)结合。DART 纳米载体首先与红细胞结合,然后随着结合的红细胞挤压穿过毛细血管转移到靶器官的内皮细胞。我们发现,在小鼠血管内注射后几分钟内,近 70%ID 的 DART 纳米载体积聚在靶器官(肺部)中,比多种先前技术达到的%ID 上限增加了一倍以上,最终使大多数%ID 积聚在靶器官中。在灌注的人肺中的人源化 DART 纳米载体再现了这一现象。此外,DART 将递送至靶器官内皮细胞的选择性提高了 6 倍,超过了靶器官内局部吞噬细胞的选择性。DART 在器官和细胞类型靶向方面的显著改善可能有助于将药物用于多种医学应用。

相似文献

1
Dual Affinity to RBCs and Target Cells (DART) Enhances Both Organ- and Cell Type-Targeting of Intravascular Nanocarriers.
ACS Nano. 2022 Mar 22;16(3):4666-4683. doi: 10.1021/acsnano.1c11374. Epub 2022 Mar 10.
2
Red blood cell-hitchhiking boosts delivery of nanocarriers to chosen organs by orders of magnitude.
Nat Commun. 2018 Jul 11;9(1):2684. doi: 10.1038/s41467-018-05079-7.
4
Delivering nanoparticles to lungs while avoiding liver and spleen through adsorption on red blood cells.
ACS Nano. 2013 Dec 23;7(12):11129-37. doi: 10.1021/nn404853z. Epub 2013 Nov 12.
5
Red Blood Cell Hitchhiking: A Novel Approach for Vascular Delivery of Nanocarriers.
Annu Rev Biomed Eng. 2021 Jul 13;23:225-248. doi: 10.1146/annurev-bioeng-121219-024239. Epub 2021 Mar 31.
6
A numerical study on drug delivery multiscale synergy of cellular hitchhiking onto red blood cells.
Nanoscale. 2021 Oct 28;13(41):17359-17372. doi: 10.1039/d1nr04057j.
7
Nanocarriers' repartitioning of drugs between blood subcompartments as a mechanism of improving pharmacokinetics, safety, and efficacy.
J Control Release. 2024 Oct;374:425-440. doi: 10.1016/j.jconrel.2024.07.070. Epub 2024 Aug 26.
8
Red blood cells: The metamorphosis of a neglected carrier into the natural mothership for artificial nanocarriers.
Adv Drug Deliv Rev. 2021 Nov;178:113992. doi: 10.1016/j.addr.2021.113992. Epub 2021 Sep 29.
9
Red blood cells: Supercarriers for drugs, biologicals, and nanoparticles and inspiration for advanced delivery systems.
Adv Drug Deliv Rev. 2016 Nov 15;106(Pt A):88-103. doi: 10.1016/j.addr.2016.02.007. Epub 2016 Mar 3.
10
Red blood cell-hitchhiking chitosan nanoparticles for prolonged blood circulation time of vitamin K.
Int J Pharm. 2021 Jan 5;592:120084. doi: 10.1016/j.ijpharm.2020.120084. Epub 2020 Nov 12.

引用本文的文献

1
Advanced nanotherapies for precision treatment of inflammatory lung diseases.
Bioact Mater. 2025 Jul 20;53:329-365. doi: 10.1016/j.bioactmat.2025.07.028. eCollection 2025 Nov.
3
Advances in medical devices using nanomaterials and nanotechnology: Innovation and regulatory science.
Bioact Mater. 2025 Feb 20;48:353-369. doi: 10.1016/j.bioactmat.2025.02.017. eCollection 2025 Jun.
4
Red blood cells-derived components as biomimetic functional materials: Matching versatile delivery strategies based on structure and function.
Bioact Mater. 2025 Feb 13;47:481-501. doi: 10.1016/j.bioactmat.2025.01.021. eCollection 2025 May.
6
Cell-mediated nanoparticle delivery systems: towards precision nanomedicine.
Drug Deliv Transl Res. 2024 Nov;14(11):3032-3054. doi: 10.1007/s13346-024-01591-0. Epub 2024 Apr 13.
8
Drug-loaded erythrocytes: Modern approaches for advanced drug delivery for clinical use.
Heliyon. 2023 Dec 15;10(1):e23451. doi: 10.1016/j.heliyon.2023.e23451. eCollection 2024 Jan 15.
9
Drug transport by red blood cells.
Front Physiol. 2023 Dec 11;14:1308632. doi: 10.3389/fphys.2023.1308632. eCollection 2023.
10
Gas Vesicle-Blood Interactions Enhance Ultrasound Imaging Contrast.
Nano Lett. 2023 Dec 13;23(23):10748-10757. doi: 10.1021/acs.nanolett.3c02780. Epub 2023 Nov 20.

本文引用的文献

1
T Cell-Targeting Nanoparticle Drug Delivery Systems: Considerations for Rational Design.
ACS Nano. 2021 Mar 23;15(3):3736-3753. doi: 10.1021/acsnano.0c09514. Epub 2021 Feb 18.
2
Neutrophils Enable Local and Non-Invasive Liposome Delivery to Inflamed Skeletal Muscle and Ischemic Heart.
Adv Mater. 2020 Dec;32(48):e2003598. doi: 10.1002/adma.202003598. Epub 2020 Oct 26.
3
Targeting drug delivery in the vascular system: Focus on endothelium.
Adv Drug Deliv Rev. 2020;157:96-117. doi: 10.1016/j.addr.2020.06.013. Epub 2020 Jun 21.
4
Vascular Drug Delivery Using Carrier Red Blood Cells: Focus on RBC Surface Loading and Pharmacokinetics.
Pharmaceutics. 2020 May 9;12(5):440. doi: 10.3390/pharmaceutics12050440.
5
Flow Rate Affects Nanoparticle Uptake into Endothelial Cells.
Adv Mater. 2020 Jun;32(24):e1906274. doi: 10.1002/adma.201906274. Epub 2020 May 8.
7
Targeted Delivery of siRNA Lipoplexes to Cancer Cells Using Macrophage Transient Horizontal Gene Transfer.
Adv Sci (Weinh). 2019 Sep 4;6(21):1900582. doi: 10.1002/advs.201900582. eCollection 2019 Nov 6.
8
Nanoparticles in the clinic: An update.
Bioeng Transl Med. 2019 Sep 5;4(3):e10143. doi: 10.1002/btm2.10143. eCollection 2019 Sep.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验