Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.
Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada.
Nano Lett. 2023 Dec 13;23(23):10748-10757. doi: 10.1021/acs.nanolett.3c02780. Epub 2023 Nov 20.
Gas vesicles (GVs) are genetically encoded, air-filled protein nanostructures of broad interest for biomedical research and clinical applications, acting as imaging and therapeutic agents for ultrasound, magnetic resonance, and optical techniques. However, the biomedical applications of GVs as systemically injectable nanomaterials have been hindered by a lack of understanding of GVs' interactions with blood components, which can significantly impact behavior. Here, we investigate the dynamics of GVs in the bloodstream using a combination of ultrasound and optical imaging, surface functionalization, flow cytometry, and mass spectrometry. We find that erythrocytes and serum proteins bind to GVs and shape their acoustic response, circulation time, and immunogenicity. We show that by modifying the GV surface we can alter these interactions and thereby modify GVs' performance. These results provide critical insights for the development of GVs as agents for nanomedicine.
气室(GVs)是一种具有广泛生物医学研究和临床应用价值的基因编码、充满空气的蛋白质纳米结构,可作为超声、磁共振和光学技术的成像和治疗剂。然而,作为可全身注射的纳米材料,GVs 的生物医学应用受到了对其与血液成分相互作用的理解不足的阻碍,这些相互作用会显著影响其行为。在这里,我们使用超声和光学成像、表面功能化、流式细胞术和质谱法的组合来研究 GVs 在血液中的动力学。我们发现红细胞和血清蛋白与 GVs 结合,并塑造它们的声学响应、循环时间和免疫原性。我们表明,通过修饰 GV 表面,我们可以改变这些相互作用,从而改变 GVs 的性能。这些结果为 GVs 作为纳米医学制剂的开发提供了关键的见解。