Suppr超能文献

用于分析个体产蛋母鸡行为的惯性传感器和机器学习技术的应用

Implementation of Inertia Sensor and Machine Learning Technologies for Analyzing the Behavior of Individual Laying Hens.

作者信息

Derakhshani Sayed M, Overduin Matthias, van Niekerk Thea G C M, Groot Koerkamp Peter W G

机构信息

Farm Technology Group, Wageningen University, 6700 AA Wageningen, The Netherlands.

Biometris, Wageningen University, 6700 AA Wageningen, The Netherlands.

出版信息

Animals (Basel). 2022 Feb 22;12(5):536. doi: 10.3390/ani12050536.

Abstract

Welfare-oriented regulations cause farmers worldwide to shift towards more welfare-friendly, e.g., loose housing systems such as aviaries with litter. In contrast to the traditional cage housing systems, good technical results can only be obtained if the behavior of hens is considered. With increasing flock sizes, the automation of behavioural assessment can be beneficial. This research aims to show a proof of principle of tools for analyzing laying-hen behaviors by using wearable inertia sensor technology and a machine learning model (ML). For this aim, the behaviors of hens were classified into three classes: static, semi-dynamic, and highly dynamic behavior. The activities of hens were continuously recorded on video and synchronized with the sensor signals. Two hens were equipped with sensors, one marked green and one blue, for five days to collect the data. The training data set indicated that the ML model can accurately classify the highly dynamic behaviors with a one-second time window; a four-second time window is accurate for static and semi-dynamic behaviors. The Bagged Trees model, with an overall accuracy of 89% was the best ML model with the F1-scores of 89%, 91%, and 87% for static, semi-dynamic, and highly dynamic behaviors. The Bagged Trees model also performed well in classifying the behaviors of the hen in the validation data set with an overall F1-score of 0.92 (uniform either % or decimals). This research illustrates that the combination of wearable inertia sensors and machine learning is a viable technique for analyzing the laying-hen behaviors and supporting farmers in the management of hens in loose housing systems.

摘要

以福利为导向的规定促使全球各地的养殖户转向更有利于动物福利的养殖方式,例如采用带有垫料的禽舍等宽松养殖系统。与传统的笼养系统不同,只有考虑母鸡的行为,才能取得良好的技术效果。随着鸡群规模的不断扩大,行为评估的自动化可能会带来益处。本研究旨在通过使用可穿戴惯性传感器技术和机器学习模型(ML),展示用于分析蛋鸡行为的工具的原理证明。为此,将母鸡的行为分为三类:静态行为、半动态行为和高度动态行为。母鸡的活动通过视频持续记录,并与传感器信号同步。给两只母鸡佩戴传感器,一只标记为绿色,一只标记为蓝色,持续五天以收集数据。训练数据集表明,ML模型能够在一秒的时间窗口内准确分类高度动态行为;对于静态和半动态行为,四秒的时间窗口是准确的。袋装树模型的总体准确率为89%,是最佳的ML模型,其静态、半动态和高度动态行为的F1分数分别为89%、91%和87%。袋装树模型在验证数据集中对母鸡行为的分类也表现良好,总体F1分数为0.92(统一为百分比或小数形式)。本研究表明,可穿戴惯性传感器和机器学习的结合是一种可行的技术,可用于分析蛋鸡行为,并在宽松养殖系统中为养殖户管理母鸡提供支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aaac/8908817/3f68e1f0c3d5/animals-12-00536-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验