Suppr超能文献

使用可穿戴惯性传感器评估蛋鸡行为识别管道。

Evaluating Behavior Recognition Pipeline of Laying Hens Using Wearable Inertial Sensors.

机构信息

Division of Advanced Information Technology and Computer Science, Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan.

Department of Bio-Functions and Systems Science, Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan.

出版信息

Sensors (Basel). 2023 May 25;23(11):5077. doi: 10.3390/s23115077.

Abstract

Recently, animal welfare has gained worldwide attention. The concept of animal welfare encompasses the physical and mental well-being of animals. Rearing layers in battery cages (conventional cages) may violate their instinctive behaviors and health, resulting in increased animal welfare concerns. Therefore, welfare-oriented rearing systems have been explored to improve their welfare while maintaining productivity. In this study, we explore a behavior recognition system using a wearable inertial sensor to improve the rearing system based on continuous monitoring and quantifying behaviors. Supervised machine learning recognizes a variety of 12 hen behaviors where various parameters in the processing pipeline are considered, including the classifier, sampling frequency, window length, data imbalance handling, and sensor modality. A reference configuration utilizes a multi-layer perceptron as a classifier; feature vectors are calculated from the accelerometer and angular velocity sensor in a 1.28 s window sampled at 100 Hz; the training data are unbalanced. In addition, the accompanying results would allow for a more intensive design of similar systems, estimation of the impact of specific constraints on parameters, and recognition of specific behaviors.

摘要

最近,动物福利引起了全球的关注。动物福利的概念包括动物的身体和精神健康。在笼中饲养蛋鸡(传统笼)可能会违反它们的本能行为和健康,从而增加动物福利问题。因此,人们探索了以福利为导向的饲养系统,以在保持生产力的同时提高动物的福利。在这项研究中,我们探索了一种使用可穿戴惯性传感器的行为识别系统,以通过连续监测和量化行为来改进饲养系统。监督式机器学习可以识别 12 种母鸡行为,同时考虑了处理管道中的各种参数,包括分类器、采样频率、窗口长度、数据不平衡处理和传感器模式。参考配置使用多层感知机作为分类器;从加速度计和角速度传感器中计算特征向量,在 100 Hz 下以 1.28 s 的窗口进行采样;训练数据不平衡。此外,相关结果可以更深入地设计类似系统,估计特定参数对参数的影响,并识别特定行为。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4078/10255644/01ce45d7b9ca/sensors-23-05077-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验