Hasegawa Kouki, Tanaka Shigeru, Bataev Ivan, Inao Daisuke, Nishi Matatoshi, Kubota Akihisa, Hokamoto Kazuyuki
Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto-shi 860-8555, Kumamoto, Japan.
Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto-shi 860-8555, Kumamoto, Japan.
Materials (Basel). 2022 Feb 25;15(5):1727. doi: 10.3390/ma15051727.
In the last decade, a new technique has been developed for the nanoimprinting of thin-metal foils using laser-induced shock waves. Recent studies have proposed replacing metal or silicone molds with inexpensive polymer molds for nanoimprinting. In addition, explosive-derived shock waves provide deeper imprinting than molds, greatly simplifying the application of this technology for mass production. In this study, we focused on explosive-derived shock waves, which persist longer than laser-induced shock waves. A numerical analysis and a set of simplified molding experiments were conducted to identify the cause of the deep imprint. Our numerical analysis has accurately simulated the pressure history and deformation behavior of the workpiece and the mold. Whereas a high pressure immediately deforms the polymer mold, a sustained pressure gradually increases the molding depth of the workpiece. Therefore, the duration of the pressure can be one of the conditions to control the impact imprint phenomenon.
在过去十年中,已经开发出一种利用激光诱导冲击波对薄金属箔进行纳米压印的新技术。最近的研究提出用廉价的聚合物模具替代金属或硅树脂模具进行纳米压印。此外,爆炸产生的冲击波比模具能实现更深的压印,极大地简化了该技术在大规模生产中的应用。在本研究中,我们聚焦于爆炸产生的冲击波,其持续时间比激光诱导冲击波更长。进行了数值分析和一系列简化的成型实验以确定深压印的原因。我们的数值分析准确模拟了工件和模具的压力历程及变形行为。高压会使聚合物模具立即变形,而持续的压力会逐渐增加工件的成型深度。因此,压力持续时间可以作为控制冲击压印现象的条件之一。