Tricase Angelo, Imbriano Anna, Ditaranto Nicoletta, Macchia Eleonora, Picca Rosaria Anna, Blasi Davide, Torsi Luisa, Bollella Paolo
Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy.
Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy.
Nanomaterials (Basel). 2022 Mar 4;12(5):867. doi: 10.3390/nano12050867.
Herein, we report a combined strategy encompassing electrochemical and X-ray photoelectron spectroscopy (XPS) experiments to investigate self-assembled monolayer (SAM) conformational reorganization onto an electrode surface due to the application of an electrical field. In particular, 3-mercaptopriopionic acid SAM (3MPA SAM) modified gold electrodes are activated with a 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and -hydroxysulfosuccinimide (NHSS) (EDC-NHSS) mixture by shortening the activation time, from 2 h to 15/20 min, labelled as Protocol-A, -B and -C, respectively. This step, later followed by a deactivation process with ethanolamine (EA), plays a key role in the reaction yields (formation of -(2-hydroxyethyl)-3-mercaptopropanamide, NMPA) but also in the conformational rearrangement observed during the application of the electrical field. This study aims at explaining the high performance (i.e., single-molecule detection at a large electrode interface) of bioelectronic devices, where the 3MPA-based SAM structure is pivotal in achieving extremely high sensing performance levels due to its interchain interaction. Cyclic voltammetry (CV) experiments performed in KFe(CN):KFe(CN) for 3MPA SAMs that are activated/deactivated show similar trends of anodic peak current (I) over time, mainly related to the presence of interchain hydrogen bonds, driving the conformational rearrangements (tightening of SAMs structure) while applying an electrical field. In addition, XPS analysis allows correlation of the deactivation yield with electrochemical data (conformational rearrangements), identifying the best protocol in terms of high reaction yield, mainly related to the shorter reaction time, and not triggering any side reactions. Finally, Protocol-C's SAM surface coverage, determined by CV in HSO and differential pulse voltammetry (DPV) in NaOH, was 1.29 * 10 molecules cm, being similar to the bioreceptor surface coverage in single-molecule detection at a large electrode interface.
在此,我们报告了一种结合电化学和X射线光电子能谱(XPS)实验的策略,以研究由于施加电场而在电极表面发生的自组装单分子层(SAM)构象重组。具体而言,通过将活化时间从2小时缩短至15/20分钟,用1-乙基-3-(3-二甲基氨基丙基)碳二亚胺(EDC)和N-羟基磺基琥珀酰亚胺(NHSS)(EDC-NHSS)混合物对3-巯基丙酸SAM(3MPA SAM)修饰的金电极进行活化,分别标记为方案A、B和C。这一步骤随后用乙醇胺(EA)进行失活处理,在反应产率(形成N-(2-羟乙基)-3-巯基丙酰胺,NMPA)中起着关键作用,同时在施加电场期间观察到的构象重排中也起着关键作用。本研究旨在解释生物电子器件的高性能(即在大电极界面进行单分子检测),其中基于3MPA的SAM结构由于其链间相互作用,在实现极高的传感性能水平方面至关重要。在K₃Fe(CN)₆/K₄Fe(CN)₆中对活化/失活的3MPA SAM进行的循环伏安法(CV)实验显示,阳极峰值电流(I)随时间的变化趋势相似,这主要与链间氢键的存在有关,在施加电场时驱动构象重排(SAM结构收紧)。此外,XPS分析允许将失活产率与电化学数据(构象重排)相关联,确定在高反应产率方面的最佳方案,这主要与较短的反应时间有关,并且不会引发任何副反应。最后,通过在H₂SO₄中的CV和在NaOH中的差分脉冲伏安法(DPV)测定的方案C的SAM表面覆盖率为1.29×10⁻¹⁰分子/cm²,与大电极界面单分子检测中的生物受体表面覆盖率相似。