Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan.
Molecular and Cell Biology, Taiwan International Graduate Program, Institute of Molecular Biology, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan.
Int J Mol Sci. 2022 Feb 25;23(5):2570. doi: 10.3390/ijms23052570.
Adaptive mechanisms that facilitate intestinal colonization by the human microbiota, including , may be better understood by analyzing the physiology and gene expression of bacteria in low-oxygen environments. We used high-throughput transcriptomics and proteomics to compare the expression profiles of grown under aerobic versus microaerobic conditions. Clustering of high-abundance transcripts under microaerobiosis highlighted genes controlling acid-stress adaptation (, , and operons), cell adhesion/biofilm formation ( and operons), electron transport (), oligopeptide transport (), and anaerobic respiration/fermentation ( and operons). In contrast, downregulated genes were involved in iron transport (, and operons), iron-sulfur cluster assembly ( and operons), aerobic respiration ( and operons), and de novo nucleotide synthesis (). Additionally, quantitative proteomics showed that the products (proteins) of these high- or low-abundance transcripts were expressed consistently. Our findings highlight interrelationships among energy production, carbon metabolism, and iron homeostasis. Moreover, we have identified and validated a subset of differentially expressed noncoding small RNAs (i.e., CsrC, RyhB, RprA and GcvB), and we discuss their regulatory functions during microaerobic growth. Collectively, we reveal key changes in gene expression at the transcriptional and post-transcriptional levels that sustain growth when oxygen levels are low.
有助于人类微生物组定植肠道的适应机制,包括,通过分析低氧环境中细菌的生理学和基因表达,可能会得到更好的理解。我们使用高通量转录组学和蛋白质组学来比较有氧和微氧条件下生长的的表达谱。微氧条件下高丰度转录物的聚类突出了控制酸应激适应(、、和操纵子)、细胞粘附/生物膜形成(和操纵子)、电子传递()、寡肽转运()和厌氧呼吸/发酵(和操纵子)的基因。相比之下,下调的基因参与铁运输(、和操纵子)、铁硫簇组装(和操纵子)、需氧呼吸(和操纵子)和从头核苷酸合成()。此外,定量蛋白质组学显示这些高或低丰度转录物的产物(蛋白质)表达一致。我们的研究结果强调了能量产生、碳代谢和铁平衡之间的相互关系。此外,我们已经鉴定和验证了一组差异表达的非编码小 RNA(即 CsrC、RyhB、RprA 和 GcvB),并讨论了它们在微氧生长过程中的调节功能。总的来说,我们揭示了在低氧水平下维持生长时,转录和转录后水平的基因表达的关键变化。