Suppr超能文献

基于多跳无线网络中基于信道的物理层认证的最佳功率分配。

Optimal Power Allocation for Channel-Based Physical Layer Authentication in Dual-Hop Wireless Networks.

机构信息

China Academy of Space Technology (Xi'an), Xi'an 710000, China.

National Key Laboratory of Science and Technology on Communication of UESTC, Chengdu 611731, China.

出版信息

Sensors (Basel). 2022 Feb 24;22(5):1759. doi: 10.3390/s22051759.

Abstract

Channel-based physical-layer authentication, which is capable of detecting spoofing attacks in dual-hop wireless networks with low cost and low complexity, attracted a great deal of attention from researchers. In this paper, we explore the likelihood ratio test (LRT) with cascade channel frequency response, which is optimal according to the Neyman-Pearson theorem. Since it is difficult to derive the theoretical threshold and the probability of detection for LRT, majority voting (MV) algorithm is employed as a trade-off between performance and practicality. We make decisions according to the temporal variations of channel frequency response in independent subcarriers separately, the results of which are used to achieve a hypothesis testing. Then, we analyze the theoretical false alarm rate (FAR) and miss detection rate (MDR) by quantifying the upper bound of their sum. Moreover, we develop the optimal power allocation strategy between the transmitter and the relay by minimizing the derived upper bound with the optimal decision threshold according to the relay-to-receiver channel gain. The proposed power allocation strategy takes advantage of the difference of noise power between the relay and the receiver to jointly adjust the transmit power, so as to improve the authentication performance on condition of fixed total power. Simulation results demonstrate that the proposed power allocation strategy outperforms the equal power allocation in terms of FAR and MDR.

摘要

基于信道的物理层认证能够以低成本和低复杂度检测到双跳无线网络中的欺骗攻击,因此引起了研究人员的极大关注。在本文中,我们探讨了级联信道频率响应的似然比检验(LRT),根据 Neyman-Pearson 定理,它是最优的。由于很难推导出 LRT 的理论阈值和检测概率,因此采用多数投票(MV)算法作为性能和实用性之间的折衷。我们根据独立子载波中信道频率响应的时间变化分别做出决策,然后根据假设检验使用这些结果。然后,我们通过量化它们和的上界来分析理论误报率(FAR)和漏检率(MDR)。此外,我们通过根据中继到接收机信道增益最小化所导出的上界并使用最优判决阈值来开发发送器和中继器之间的最优功率分配策略。所提出的功率分配策略利用了中继器和接收机之间噪声功率的差异来联合调整发射功率,从而在固定总功率的条件下提高认证性能。仿真结果表明,所提出的功率分配策略在 FAR 和 MDR 方面优于等功率分配。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9cf2/8914856/c9afec9f3d0a/sensors-22-01759-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验