Suppr超能文献

无人机基站的两跳通信的深度 Q 学习。

Deep Q-Learning for Two-Hop Communications of Drone Base Stations.

机构信息

Research and Innovation Department, Altran Technologies, 78140 Velizy-Villacoublay, France.

Data61, CSIRO, Sydney 2015, Australia.

出版信息

Sensors (Basel). 2021 Mar 11;21(6):1960. doi: 10.3390/s21061960.

Abstract

In this paper, we address the application of the flying Drone Base Stations (DBS) in order to improve the network performance. Given the high degrees of freedom of a DBS, it can change its position and adapt its trajectory according to the users movements and the target environment. A two-hop communication model, between an end-user and a macrocell through a DBS, is studied in this work. We propose Q-learning and Deep Q-learning based solutions to optimize the drone's trajectory. Simulation results show that, by employing our proposed models, the drone can autonomously fly and adapts its mobility according to the users' movements. Additionally, the Deep Q-learning model outperforms the Q-learning model and can be applied in more complex environments.

摘要

在本文中,我们探讨了应用飞行式基站(DBS)来改善网络性能。由于 DBS 具有高度的自由度,它可以根据用户的移动和目标环境改变其位置并适应其轨迹。在这项工作中,我们研究了在端用户和宏小区之间通过 DBS 的两跳通信模型。我们提出了基于 Q-learning 和深度 Q-learning 的解决方案来优化无人机的轨迹。仿真结果表明,通过采用我们提出的模型,无人机可以自主飞行,并根据用户的移动来调整其移动性。此外,深度 Q-learning 模型优于 Q-learning 模型,并且可以应用于更复杂的环境中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8f9/7999891/151fb692f6ea/sensors-21-01960-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验