School of Computer Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China.
Department of Electrical Engineering, University of Science and Technology, Bannu 28100, Pakistan.
Sensors (Basel). 2022 Mar 4;22(5):2018. doi: 10.3390/s22052018.
In a network architecture, an intrusion detection system (IDS) is one of the most commonly used approaches to secure the integrity and availability of critical assets in protected systems. Many existing network intrusion detection systems (NIDS) utilize stand-alone classifier models to classify network traffic as an attack or as normal. Due to the vast data volume, these stand-alone models struggle to reach higher intrusion detection rates with low false alarm rates( FAR). Additionally, irrelevant features in datasets can also increase the running time required to develop a model. However, data can be reduced effectively to an optimal feature set without information loss by employing a dimensionality reduction method, which a classification model then uses for accurate predictions of the various network intrusions. In this study, we propose a novel feature-driven intrusion detection system, namely χ2-BidLSTM, that integrates a χ2 statistical model and bidirectional long short-term memory (BidLSTM). The NSL-KDD dataset is used to train and evaluate the proposed approach. In the first phase, the χ2-BidLSTM system uses a χ2 model to rank all the features, then searches an optimal subset using a forward best search algorithm. In next phase, the optimal set is fed to the BidLSTM model for classification purposes. The experimental results indicate that our proposed χ2-BidLSTM approach achieves a detection accuracy of 95.62% and an F-score of 95.65%, with a low FAR of 2.11% on NSL-KDDTest. Furthermore, our model obtains an accuracy of 89.55%, an F-score of 89.77%, and an FAR of 2.71% on NSL-KDDTest, indicating the superiority of the proposed approach over the standard LSTM method and other existing feature-selection-based NIDS methods.
在网络架构中,入侵检测系统(IDS)是保护系统中关键资产完整性和可用性的最常用方法之一。许多现有的网络入侵检测系统(NIDS)利用独立的分类器模型来将网络流量分类为攻击或正常。由于数据量庞大,这些独立模型很难在低误报率(FAR)的情况下达到更高的入侵检测率。此外,数据集中不相关的特征也会增加开发模型所需的运行时间。然而,通过采用降维方法可以有效地将数据减少到最优特征集,而不会丢失信息,然后分类模型可以使用该特征集来准确预测各种网络入侵。在这项研究中,我们提出了一种新颖的基于特征的入侵检测系统,即 χ2-BidLSTM,它集成了 χ2 统计模型和双向长短期记忆(BidLSTM)。使用 NSL-KDD 数据集对所提出的方法进行训练和评估。在第一阶段, χ2-BidLSTM 系统使用 χ2 模型对所有特征进行排名,然后使用前向最佳搜索算法搜索最佳子集。在下一阶段,将最佳集输入 BidLSTM 模型进行分类。实验结果表明,我们提出的 χ2-BidLSTM 方法在 NSL-KDDTest 上的检测准确率为 95.62%,F 分数为 95.65%,误报率(FAR)低至 2.11%。此外,我们的模型在 NSL-KDDTest 上的准确率为 89.55%,F 分数为 89.77%,误报率(FAR)为 2.71%,这表明我们的方法优于标准 LSTM 方法和其他现有的基于特征选择的 NIDS 方法。