Suppr超能文献

高级计量基础设施中的入侵检测系统:一种基于跨层特征融合的 CNN-LSTM 方法。

Intrusion Detection System in the Advanced Metering Infrastructure: A Cross-Layer Feature-Fusion CNN-LSTM-Based Approach.

机构信息

Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China.

出版信息

Sensors (Basel). 2021 Jan 18;21(2):626. doi: 10.3390/s21020626.

Abstract

Among the key components of a smart grid, advanced metering infrastructure (AMI) has become the preferred target for network intrusion due to its bidirectional communication and Internet connection. Intrusion detection systems (IDSs) can monitor abnormal information in the AMI network, so they are an important means by which to solve network intrusion. However, the existing methods exhibit a poor ability to detect intrusions in AMI, because they cannot comprehensively consider the temporal and global characteristics of intrusion information. To solve these problems, an AMI intrusion detection model based on the cross-layer feature fusion of a convolutional neural networks (CNN) and long short-term memory (LSTM) networks is proposed in the present work. The model is composed of CNN and LSTM components connected in the form of a cross-layer; the CNN component recognizes regional features to obtain global features, while the LSTM component obtain periodic features by memory function. The two types of features are aggregated to obtain comprehensive features with multi-domain characteristics, which can more accurately identify intrusion information in AMI. Experiments based on the KDD Cup 99 and NSL-KDD datasets demonstrate that the proposed cross-layer feature-fusion CNN-LSTM model is superior to other existing methods.

摘要

在智能电网的关键组成部分中,高级计量基础设施(AMI)由于其双向通信和互联网连接,已成为网络入侵的首选目标。入侵检测系统(IDS)可以监测 AMI 网络中的异常信息,因此是解决网络入侵的重要手段。然而,现有的方法在检测 AMI 中的入侵方面能力较差,因为它们不能全面考虑入侵信息的时间和全局特征。为了解决这些问题,本研究提出了一种基于卷积神经网络(CNN)和长短时记忆(LSTM)网络的跨层特征融合的 AMI 入侵检测模型。该模型由以跨层形式连接的 CNN 和 LSTM 组件组成;CNN 组件通过识别区域特征来获取全局特征,而 LSTM 组件通过记忆功能获取周期性特征。两种类型的特征被聚合以获得具有多域特征的综合特征,从而可以更准确地识别 AMI 中的入侵信息。基于 KDD Cup 99 和 NSL-KDD 数据集的实验表明,所提出的跨层特征融合 CNN-LSTM 模型优于其他现有方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a30e/7830526/5197f65b0c98/sensors-21-00626-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验