Institute of Automatic Control and Robotics, Warsaw University of Technology, 02-525 Warsaw, Poland.
Faculty of Cybernetics, Military University of Technology, 00-908 Warsaw, Poland.
Sensors (Basel). 2022 Mar 7;22(5):2068. doi: 10.3390/s22052068.
The article presents real-time object detection and classification methods by unmanned aerial vehicles (UAVs) equipped with a synthetic aperture radar (SAR). Two algorithms have been extensively tested: classic image analysis and convolutional neural networks (YOLOv5). The research resulted in a new method that combines YOLOv5 with post-processing using classic image analysis. It is shown that the new system improves both the classification accuracy and the location of the identified object. The algorithms were implemented and tested on a mobile platform installed on a military-class UAV as the primary unit for online image analysis. The usage of objective low-computational complexity detection algorithms on SAR scans can reduce the size of the scans sent to the ground control station.
本文提出了一种利用配备合成孔径雷达(SAR)的无人机实时进行目标检测和分类的方法。该方法对两种算法进行了广泛测试:经典图像分析和卷积神经网络(YOLOv5)。研究结果提出了一种将 YOLOv5 与经典图像分析的后处理相结合的新方法。结果表明,该新系统提高了分类准确性和识别目标的位置精度。该算法已在安装于军用级无人机上的移动平台上实现和测试,作为在线图像分析的主要单元。在 SAR 扫描中使用客观的低计算复杂度检测算法可以减小发送到地面控制站的扫描的大小。