Suppr超能文献

基于 SAR 的无人机实时目标检测与分类

Real-Time Object Detection and Classification by UAV Equipped With SAR.

机构信息

Institute of Automatic Control and Robotics, Warsaw University of Technology, 02-525 Warsaw, Poland.

Faculty of Cybernetics, Military University of Technology, 00-908 Warsaw, Poland.

出版信息

Sensors (Basel). 2022 Mar 7;22(5):2068. doi: 10.3390/s22052068.

Abstract

The article presents real-time object detection and classification methods by unmanned aerial vehicles (UAVs) equipped with a synthetic aperture radar (SAR). Two algorithms have been extensively tested: classic image analysis and convolutional neural networks (YOLOv5). The research resulted in a new method that combines YOLOv5 with post-processing using classic image analysis. It is shown that the new system improves both the classification accuracy and the location of the identified object. The algorithms were implemented and tested on a mobile platform installed on a military-class UAV as the primary unit for online image analysis. The usage of objective low-computational complexity detection algorithms on SAR scans can reduce the size of the scans sent to the ground control station.

摘要

本文提出了一种利用配备合成孔径雷达(SAR)的无人机实时进行目标检测和分类的方法。该方法对两种算法进行了广泛测试:经典图像分析和卷积神经网络(YOLOv5)。研究结果提出了一种将 YOLOv5 与经典图像分析的后处理相结合的新方法。结果表明,该新系统提高了分类准确性和识别目标的位置精度。该算法已在安装于军用级无人机上的移动平台上实现和测试,作为在线图像分析的主要单元。在 SAR 扫描中使用客观的低计算复杂度检测算法可以减小发送到地面控制站的扫描的大小。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8561/8915099/a2da7172a21b/sensors-22-02068-g011.jpg

相似文献

1
Real-Time Object Detection and Classification by UAV Equipped With SAR.
Sensors (Basel). 2022 Mar 7;22(5):2068. doi: 10.3390/s22052068.
2
Comparing YOLOv3, YOLOv4 and YOLOv5 for Autonomous Landing Spot Detection in Faulty UAVs.
Sensors (Basel). 2022 Jan 8;22(2):464. doi: 10.3390/s22020464.
4
A Framework for Planning and Execution of Drone Swarm Missions in a Hostile Environment.
Sensors (Basel). 2021 Jun 17;21(12):4150. doi: 10.3390/s21124150.
6
SAR System for UAV Operation with Motion Error Compensation beyond the Resolution Cell.
Sensors (Basel). 2008 May 23;8(5):3384-3405. doi: 10.3390/s8053384.
7
YOLOv5 with ConvMixer Prediction Heads for Precise Object Detection in Drone Imagery.
Sensors (Basel). 2022 Nov 2;22(21):8424. doi: 10.3390/s22218424.
8
Radar-Spectrogram-Based UAV Classification Using Convolutional Neural Networks.
Sensors (Basel). 2020 Dec 31;21(1):210. doi: 10.3390/s21010210.
10
DB-YOLO: A Duplicate Bilateral YOLO Network for Multi-Scale Ship Detection in SAR Images.
Sensors (Basel). 2021 Dec 6;21(23):8146. doi: 10.3390/s21238146.

引用本文的文献

1
UAV Small Target Detection Model Based on Dual Branches and Adaptive Feature Fusion.
Sensors (Basel). 2025 Jul 22;25(15):4542. doi: 10.3390/s25154542.
2
Efficient three-dimensional point cloud object detection based on improved Complex-YOLO.
Front Neurorobot. 2023 Feb 16;17:1092564. doi: 10.3389/fnbot.2023.1092564. eCollection 2023.
4
Unsupervised SAR Imagery Feature Learning with Median Filter-Based Loss Value.
Sensors (Basel). 2022 Aug 29;22(17):6519. doi: 10.3390/s22176519.

本文引用的文献

1
Determining UAV Flight Trajectory for Target Recognition Using EO/IR and SAR.
Sensors (Basel). 2020 Oct 8;20(19):5712. doi: 10.3390/s20195712.
2
UAV Mission Planning with SAR Application.
Sensors (Basel). 2020 Feb 17;20(4):1080. doi: 10.3390/s20041080.
3
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.
IEEE Trans Pattern Anal Mach Intell. 2017 Jun;39(6):1137-1149. doi: 10.1109/TPAMI.2016.2577031. Epub 2016 Jun 6.
4
Feasibility of Using Synthetic Aperture Radar to Aid UAV Navigation.
Sensors (Basel). 2015 Jul 28;15(8):18334-59. doi: 10.3390/s150818334.
5
State-of-the-art in visual attention modeling.
IEEE Trans Pattern Anal Mach Intell. 2013 Jan;35(1):185-207. doi: 10.1109/TPAMI.2012.89.
6
Statistical modeling of SAR images: a survey.
Sensors (Basel). 2010;10(1):775-95. doi: 10.3390/s100100775. Epub 2010 Jan 21.
7
LSD: a fast line segment detector with a false detection control.
IEEE Trans Pattern Anal Mach Intell. 2010 Apr;32(4):722-32. doi: 10.1109/TPAMI.2008.300.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验