文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

比较 YOLOv3、YOLOv4 和 YOLOv5 在无人机故障自主着陆点检测中的应用。

Comparing YOLOv3, YOLOv4 and YOLOv5 for Autonomous Landing Spot Detection in Faulty UAVs.

机构信息

Mechanical, Aerospace, and Material Engineering, Southern Illinois University Carbondale, 1230 Lincoln Dr, Carbondale, IL 62901, USA.

出版信息

Sensors (Basel). 2022 Jan 8;22(2):464. doi: 10.3390/s22020464.


DOI:10.3390/s22020464
PMID:35062425
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8778480/
Abstract

In-flight system failure is one of the major safety concerns in the operation of unmanned aerial vehicles (UAVs) in urban environments. To address this concern, a safety framework consisting of following three main tasks can be utilized: (1) Monitoring health of the UAV and detecting failures, (2) Finding potential safe landing spots in case a critical failure is detected in step 1, and (3) Steering the UAV to a safe landing spot found in step 2. In this paper, we specifically look at the second task, where we investigate the feasibility of utilizing object detection methods to spot safe landing spots in case the UAV suffers an in-flight failure. Particularly, we investigate different versions of the YOLO objection detection method and compare their performances for the specific application of detecting a safe landing location for a UAV that has suffered an in-flight failure. We compare the performance of YOLOv3, YOLOv4, and YOLOv5l while training them by a large aerial image dataset called DOTA in a Personal Computer (PC) and also a Companion Computer (CC). We plan to use the chosen algorithm on a CC that can be attached to a UAV, and the PC is used to verify the trends that we see between the algorithms on the CC. We confirm the feasibility of utilizing these algorithms for effective emergency landing spot detection and report their accuracy and speed for that specific application. Our investigation also shows that the YOLOv5l algorithm outperforms YOLOv4 and YOLOv3 in terms of accuracy of detection while maintaining a slightly slower inference speed.

摘要

飞行系统故障是无人机(UAV)在城市环境中运行的主要安全问题之一。为了解决这个问题,可以利用一个由以下三个主要任务组成的安全框架:(1)监测无人机的健康状况并检测故障,(2)在步骤 1 中检测到关键故障时找到潜在的安全着陆点,(3)引导无人机到步骤 2 中找到的安全着陆点。在本文中,我们特别关注第二个任务,即在无人机发生飞行故障的情况下,研究利用目标检测方法发现安全着陆点的可行性。特别是,我们研究了 YOLO 目标检测方法的不同版本,并比较了它们在检测无人机安全着陆位置的特定应用中的性能。我们比较了 YOLOv3、YOLOv4 和 YOLOv5l 在个人计算机(PC)和伴侣计算机(CC)上通过名为 DOTA 的大型航空图像数据集进行训练的性能。我们计划在可以附加到无人机上的 CC 上使用所选算法,而 PC 则用于验证我们在 CC 上看到的算法之间的趋势。我们确认了利用这些算法进行有效应急着陆点检测的可行性,并报告了它们在特定应用中的准确性和速度。我们的调查还表明,YOLOv5l 算法在检测准确性方面优于 YOLOv4 和 YOLOv3,同时保持稍慢的推理速度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c188/8778480/4c8109125cc6/sensors-22-00464-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c188/8778480/a210f9a248a2/sensors-22-00464-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c188/8778480/c1a7f6e17cee/sensors-22-00464-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c188/8778480/fb3711cd6337/sensors-22-00464-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c188/8778480/9dac69d7baba/sensors-22-00464-g004a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c188/8778480/4c8109125cc6/sensors-22-00464-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c188/8778480/a210f9a248a2/sensors-22-00464-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c188/8778480/c1a7f6e17cee/sensors-22-00464-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c188/8778480/fb3711cd6337/sensors-22-00464-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c188/8778480/9dac69d7baba/sensors-22-00464-g004a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c188/8778480/4c8109125cc6/sensors-22-00464-g005.jpg

相似文献

[1]
Comparing YOLOv3, YOLOv4 and YOLOv5 for Autonomous Landing Spot Detection in Faulty UAVs.

Sensors (Basel). 2022-1-8

[2]
Dynamic Object Tracking on Autonomous UAV System for Surveillance Applications.

Sensors (Basel). 2021-11-27

[3]
Failure Detection in Quadcopter UAVs Using K-Means Clustering.

Sensors (Basel). 2022-8-12

[4]
Detection of Pine Wilt Nematode from Drone Images Using UAV.

Sensors (Basel). 2022-6-22

[5]
Nature-Inspired Search Method and Custom Waste Object Detection and Classification Model for Smart Waste Bin.

Sensors (Basel). 2022-8-18

[6]
Research on Aerial Autonomous Docking and Landing Technology of Dual Multi-Rotor UAV.

Sensors (Basel). 2022-11-22

[7]
Real-Time Object Detection and Classification by UAV Equipped With SAR.

Sensors (Basel). 2022-3-7

[8]
Enhancing UAV Visual Landing Recognition with YOLO's Object Detection by Onboard Edge Computing.

Sensors (Basel). 2023-11-6

[9]
A Lightweight and Accurate UAV Detection Method Based on YOLOv4.

Sensors (Basel). 2022-9-11

[10]
Vision-based safe autonomous UAV docking with panoramic sensors.

Front Robot AI. 2023-11-23

引用本文的文献

[1]
A Position- and Similarity-Aware Named Entity Recognition Model for Power Equipment Maintenance Work Orders.

Sensors (Basel). 2025-3-26

[2]
Application of the YOLOv11-seg algorithm for AI-based landslide detection and recognition.

Sci Rep. 2025-4-11

[3]
YOLOPears: a novel benchmark of YOLO object detectors for multi-class pear surface defect detection in quality grading systems.

Front Plant Sci. 2025-2-17

[4]
A preliminary simulator study on exploring responses of drivers to driving system reminders on four stimuli in vehicles.

Sci Rep. 2025-2-1

[5]
Integration of Tracking, Re-Identification, and Gesture Recognition for Facilitating Human-Robot Interaction.

Sensors (Basel). 2024-7-25

[6]
Transitioning sleeping position detection in late pregnancy using computer vision from controlled to real-world settings: an observational study.

Sci Rep. 2024-7-29

[7]
Comprehensive Investigation of Unmanned Aerial Vehicles (UAVs): An In-Depth Analysis of Avionics Systems.

Sensors (Basel). 2024-5-11

[8]
Design and Characterization of a Powered Wheelchair Autonomous Guidance System.

Sensors (Basel). 2024-2-29

[9]
Lightweight Vehicle Detection Based on Improved YOLOv5s.

Sensors (Basel). 2024-2-11

[10]
A pilot study of measuring emotional response and perception of LLM-generated questionnaire and human-generated questionnaires.

Sci Rep. 2024-2-2

本文引用的文献

[1]
Object Detection in Aerial Images: A Large-Scale Benchmark and Challenges.

IEEE Trans Pattern Anal Mach Intell. 2022-11

[2]
Autonomous Vision-Based Primary Distribution Systems Porcelain Insulators Inspection Using UAVs.

Sensors (Basel). 2021-2-2

[3]
Agricultural Greenhouses Detection in High-Resolution Satellite Images Based on Convolutional Neural Networks: Comparison of Faster R-CNN, YOLO v3 and SSD.

Sensors (Basel). 2020-8-31

[4]
Spatial and temporal variations in the relationship between lake water surface temperatures and water quality - A case study of Dianchi Lake.

Sci Total Environ. 2017-12-27

[5]
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

IEEE Trans Pattern Anal Mach Intell. 2016-6-6

[6]
What is a support vector machine?

Nat Biotechnol. 2006-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索