Mechanical, Aerospace, and Material Engineering, Southern Illinois University Carbondale, 1230 Lincoln Dr, Carbondale, IL 62901, USA.
Sensors (Basel). 2022 Jan 8;22(2):464. doi: 10.3390/s22020464.
In-flight system failure is one of the major safety concerns in the operation of unmanned aerial vehicles (UAVs) in urban environments. To address this concern, a safety framework consisting of following three main tasks can be utilized: (1) Monitoring health of the UAV and detecting failures, (2) Finding potential safe landing spots in case a critical failure is detected in step 1, and (3) Steering the UAV to a safe landing spot found in step 2. In this paper, we specifically look at the second task, where we investigate the feasibility of utilizing object detection methods to spot safe landing spots in case the UAV suffers an in-flight failure. Particularly, we investigate different versions of the YOLO objection detection method and compare their performances for the specific application of detecting a safe landing location for a UAV that has suffered an in-flight failure. We compare the performance of YOLOv3, YOLOv4, and YOLOv5l while training them by a large aerial image dataset called DOTA in a Personal Computer (PC) and also a Companion Computer (CC). We plan to use the chosen algorithm on a CC that can be attached to a UAV, and the PC is used to verify the trends that we see between the algorithms on the CC. We confirm the feasibility of utilizing these algorithms for effective emergency landing spot detection and report their accuracy and speed for that specific application. Our investigation also shows that the YOLOv5l algorithm outperforms YOLOv4 and YOLOv3 in terms of accuracy of detection while maintaining a slightly slower inference speed.
飞行系统故障是无人机(UAV)在城市环境中运行的主要安全问题之一。为了解决这个问题,可以利用一个由以下三个主要任务组成的安全框架:(1)监测无人机的健康状况并检测故障,(2)在步骤 1 中检测到关键故障时找到潜在的安全着陆点,(3)引导无人机到步骤 2 中找到的安全着陆点。在本文中,我们特别关注第二个任务,即在无人机发生飞行故障的情况下,研究利用目标检测方法发现安全着陆点的可行性。特别是,我们研究了 YOLO 目标检测方法的不同版本,并比较了它们在检测无人机安全着陆位置的特定应用中的性能。我们比较了 YOLOv3、YOLOv4 和 YOLOv5l 在个人计算机(PC)和伴侣计算机(CC)上通过名为 DOTA 的大型航空图像数据集进行训练的性能。我们计划在可以附加到无人机上的 CC 上使用所选算法,而 PC 则用于验证我们在 CC 上看到的算法之间的趋势。我们确认了利用这些算法进行有效应急着陆点检测的可行性,并报告了它们在特定应用中的准确性和速度。我们的调查还表明,YOLOv5l 算法在检测准确性方面优于 YOLOv4 和 YOLOv3,同时保持稍慢的推理速度。
Sensors (Basel). 2022-1-8
Sensors (Basel). 2021-11-27
Sensors (Basel). 2022-8-12
Sensors (Basel). 2022-6-22
Sensors (Basel). 2022-11-22
Sensors (Basel). 2022-3-7
Sensors (Basel). 2023-11-6
Sensors (Basel). 2022-9-11
Front Robot AI. 2023-11-23
Sensors (Basel). 2024-2-29
Sensors (Basel). 2024-2-11
IEEE Trans Pattern Anal Mach Intell. 2022-11
Sensors (Basel). 2021-2-2
IEEE Trans Pattern Anal Mach Intell. 2016-6-6
Nat Biotechnol. 2006-12