Suppr超能文献

基于双分支与自适应特征融合的无人机小目标检测模型

UAV Small Target Detection Model Based on Dual Branches and Adaptive Feature Fusion.

作者信息

Wang Guogang, Gao Mingxing, Liu Yunpeng

机构信息

College of Information Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China.

Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.

出版信息

Sensors (Basel). 2025 Jul 22;25(15):4542. doi: 10.3390/s25154542.

Abstract

In order to solve the problem of small and dense targets in drone aerial images, a small target detection model based on dual branches and adaptive feature fusion is proposed. The model first constructs a small target detection framework with dual branches to improve the detection accuracy while reducing the number of parameters. Secondly, the model introduces semantic and detail injection (SDI) in the neck network and embeds bidirectional adaptive feature fusion in the detection head to innovate and optimize the feature fusion mechanism, achieve the full interaction of deep and shallow information, enhance the feature representation of small targets, and overcome the problem of scale inconsistency. Finally, in order to focus on the target area more accurately, we introduce the large separable kernel attention mechanism into the convolutional layer to provide it with a richer and more comprehensive feature representation, which significantly improves the detection accuracy of targets of different scales. The experimental results show that the model algorithm performs well in the VisDrone2019 dataset. Compared with the original model, the mAP50 of this model increases by 20.9%, the mAP50-95 increases by 23.7%, and the total number of parameters decreases by 61.3%, making it more suitable for drones.

摘要

为解决无人机航拍图像中小而密集目标的问题,提出了一种基于双分支和自适应特征融合的小目标检测模型。该模型首先构建了一个双分支的小目标检测框架,在减少参数数量的同时提高检测精度。其次,该模型在颈部网络中引入语义和细节注入(SDI),并在检测头中嵌入双向自适应特征融合,对特征融合机制进行创新和优化,实现深浅层信息的充分交互,增强小目标的特征表示,克服尺度不一致问题。最后,为更精准地聚焦目标区域,在卷积层引入大的可分离核注意力机制,为其提供更丰富全面的特征表示,显著提高了不同尺度目标的检测精度。实验结果表明,该模型算法在VisDrone2019数据集上表现良好。与原模型相比,该模型的mAP50提高了20.9%,mAP50-95提高了23.7%,参数总数减少了61.3%,使其更适合无人机应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/621f/12349568/180e119b5301/sensors-25-04542-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验