Suppr超能文献

基于压缩感知射频信号的无人机检测与分类深度学习方法

Deep Learning Approach to UAV Detection and Classification by Using Compressively Sensed RF Signal.

机构信息

Guangdong Key Laboratory of Intelligent Information Precessing, College of Electronic and Information Engineering, ATR Key Laboratory, Shenzhen University, Shenzhen 518060, China.

College of Electronic and Information Engineering, Shenzhen University, Shenzhen 518060, China.

出版信息

Sensors (Basel). 2022 Apr 16;22(8):3072. doi: 10.3390/s22083072.

Abstract

Recently, the frequent occurrence of the misuse and intrusion of UAVs has made it a research challenge to identify and detect them effectively, and relatively high bandwidth and pressure on data transmission and real-time processing exist when sampling UAV communication signals using the RF detection method. In this paper, firstly, for data sampling, we chose a compressed sensing technique to replace the traditional sampling theorem and used a multi-channel random demodulator to sample the signal; secondly, for the detection and identification of the presence, type, and flight pattern of UAVs, a multi-stage deep learning-based UAV identification and detection method was proposed by exploiting the difference in communication signals between UAVs and controllers under different circumstances. The data samples are first passed by detectors that detect the presence of UAVs, then classifiers are used to identify the type of UAVs, and finally flight patterns are judged by the corresponding classifiers, for which two neural network structures (DNN and CNN) are constructed by deep learning algorithms and evaluated and validated by a 10-fold cross-validation method, with the DNN network used for detectors and the CNN network for subsequent type and flying mode classification. The experimental results demonstrate, first, the effectiveness of using compressed sensing for sampling the communication signals of UAVs and controllers; and second, the detecting method with multi-stage DL detects higher efficiency and accuracy compared with existing detecting methods, detecting the presence, type, and flight model of UAVs with an accuracy of over 99%.

摘要

最近,无人机的频繁滥用和入侵使得有效识别和检测它们成为一个研究挑战,并且使用 RF 检测方法对无人机通信信号进行采样时存在相对较高的带宽和数据传输实时处理压力。本文首先针对数据采样,选择压缩感知技术代替传统的采样定理,并使用多通道随机解调器对信号进行采样;其次,针对无人机的存在、类型和飞行模式的检测和识别,提出了一种基于多级深度学习的无人机识别和检测方法,利用无人机和控制器在不同情况下的通信信号差异。数据样本首先通过检测无人机存在的探测器传递,然后使用分类器识别无人机的类型,最后由相应的分类器判断飞行模式,通过深度学习算法构建了两种神经网络结构(DNN 和 CNN),并通过 10 倍交叉验证方法进行评估和验证,其中 DNN 网络用于探测器,CNN 网络用于后续的类型和飞行模式分类。实验结果表明,首先,使用压缩感知对无人机和控制器的通信信号进行采样是有效的;其次,与现有检测方法相比,具有多级 DL 的检测方法具有更高的效率和准确性,能够以超过 99%的准确率检测无人机的存在、类型和飞行模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53fc/9031341/cc0238e04d1a/sensors-22-03072-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验