USC Neuroscience Graduate Program, United States.
Qualcomm Inc., United States.
Neuroscience. 2022 May 1;489:234-250. doi: 10.1016/j.neuroscience.2022.02.033. Epub 2022 Mar 7.
A signature feature of the neocortex is the dense network of horizontal connections (HCs) through which pyramidal neurons (PNs) exchange "contextual" information. In primary visual cortex (V1), HCs are thought to facilitate boundary detection, a crucial operation for object recognition, but how HCs modulate PN responses to boundary cues within their classical receptive fields (CRF) remains unknown. We began by "asking" natural images, through a structured data collection and ground truth labeling process, what function a V1 cell should use to compute boundary probability from aligned edge cues within and outside its CRF. The "answer" was an asymmetric 2-D sigmoidal function, whose nonlinear form provides the first normative account for the "multiplicative" center-flanker interactions previously reported in V1 neurons (Kapadia et al., 1995, 2000; Polat et al., 1998). Using a detailed compartmental model, we then show that this boundary-detecting classical-contextual interaction function can be computed by NMDAR-dependent spatial synaptic interactions within PN dendrites - the site where classical and contextual inputs first converge in the cortex. In additional simulations, we show that local interneuron circuitry activated by HCs can powerfully leverage the nonlinear spatial computing capabilities of PN dendrites, providing the cortex with a highly flexible substrate for integration of classical and contextual information.
新皮质的一个显著特征是密集的水平连接(HCs)网络,通过这些连接,锥体细胞(PNs)可以交换“上下文”信息。在初级视觉皮层(V1)中,HCs 被认为有助于边界检测,这是物体识别的关键操作,但 HCs 如何调节 PN 对其经典感受野(CRF)内边界线索的反应仍然未知。我们首先通过结构化数据收集和地面实况标记过程“询问”自然图像,V1 细胞应该使用什么功能来根据其 CRF 内外对齐的边缘线索计算边界概率。“答案”是一个不对称的 2-D sigmoidal 函数,其非线性形式为 V1 神经元中先前报道的“乘法”中心-侧翼相互作用提供了第一个规范解释(Kapadia 等人,1995 年,2000 年;Polat 等人,1998 年)。然后,我们使用详细的分区模型表明,这种边界检测的经典上下文交互功能可以通过 PN 树突内 NMDAR 依赖性空间突触相互作用来计算-这是经典和上下文输入在皮层中首次汇聚的部位。在额外的模拟中,我们表明由 HCs 激活的局部中间神经元电路可以有力地利用 PN 树突的非线性空间计算能力,为皮层提供了一个高度灵活的基础,用于整合经典和上下文信息。