Suppr超能文献

V1 中的经典-语境相互作用可能依赖于树突计算。

Classical-Contextual Interactions in V1 May Rely on Dendritic Computations.

机构信息

USC Neuroscience Graduate Program, United States.

Qualcomm Inc., United States.

出版信息

Neuroscience. 2022 May 1;489:234-250. doi: 10.1016/j.neuroscience.2022.02.033. Epub 2022 Mar 7.

Abstract

A signature feature of the neocortex is the dense network of horizontal connections (HCs) through which pyramidal neurons (PNs) exchange "contextual" information. In primary visual cortex (V1), HCs are thought to facilitate boundary detection, a crucial operation for object recognition, but how HCs modulate PN responses to boundary cues within their classical receptive fields (CRF) remains unknown. We began by "asking" natural images, through a structured data collection and ground truth labeling process, what function a V1 cell should use to compute boundary probability from aligned edge cues within and outside its CRF. The "answer" was an asymmetric 2-D sigmoidal function, whose nonlinear form provides the first normative account for the "multiplicative" center-flanker interactions previously reported in V1 neurons (Kapadia et al., 1995, 2000; Polat et al., 1998). Using a detailed compartmental model, we then show that this boundary-detecting classical-contextual interaction function can be computed by NMDAR-dependent spatial synaptic interactions within PN dendrites - the site where classical and contextual inputs first converge in the cortex. In additional simulations, we show that local interneuron circuitry activated by HCs can powerfully leverage the nonlinear spatial computing capabilities of PN dendrites, providing the cortex with a highly flexible substrate for integration of classical and contextual information.

摘要

新皮质的一个显著特征是密集的水平连接(HCs)网络,通过这些连接,锥体细胞(PNs)可以交换“上下文”信息。在初级视觉皮层(V1)中,HCs 被认为有助于边界检测,这是物体识别的关键操作,但 HCs 如何调节 PN 对其经典感受野(CRF)内边界线索的反应仍然未知。我们首先通过结构化数据收集和地面实况标记过程“询问”自然图像,V1 细胞应该使用什么功能来根据其 CRF 内外对齐的边缘线索计算边界概率。“答案”是一个不对称的 2-D sigmoidal 函数,其非线性形式为 V1 神经元中先前报道的“乘法”中心-侧翼相互作用提供了第一个规范解释(Kapadia 等人,1995 年,2000 年;Polat 等人,1998 年)。然后,我们使用详细的分区模型表明,这种边界检测的经典上下文交互功能可以通过 PN 树突内 NMDAR 依赖性空间突触相互作用来计算-这是经典和上下文输入在皮层中首次汇聚的部位。在额外的模拟中,我们表明由 HCs 激活的局部中间神经元电路可以有力地利用 PN 树突的非线性空间计算能力,为皮层提供了一个高度灵活的基础,用于整合经典和上下文信息。

相似文献

1
Classical-Contextual Interactions in V1 May Rely on Dendritic Computations.V1 中的经典-语境相互作用可能依赖于树突计算。
Neuroscience. 2022 May 1;489:234-250. doi: 10.1016/j.neuroscience.2022.02.033. Epub 2022 Mar 7.
3
Synaptic Correlates of Low-Level Perception in V1.初级视皮层中低水平感知的突触关联
J Neurosci. 2016 Apr 6;36(14):3925-42. doi: 10.1523/JNEUROSCI.4492-15.2016.
9
10
Spatial phase sensitivity of V1 neurons in alert monkey.警觉猴V1神经元的空间相位敏感性
Cereb Cortex. 2005 Nov;15(11):1697-702. doi: 10.1093/cercor/bhi046. Epub 2005 Feb 9.

本文引用的文献

2
Mechanisms underlying gain modulation in the cortex.皮层中增益调制的作用机制。
Nat Rev Neurosci. 2020 Feb;21(2):80-92. doi: 10.1038/s41583-019-0253-y. Epub 2020 Jan 7.
6
Local Order within Global Disorder: Synaptic Architecture of Visual Space.全局无序中的局部秩序:视觉空间的突触结构
Neuron. 2017 Dec 6;96(5):1127-1138.e4. doi: 10.1016/j.neuron.2017.10.017. Epub 2017 Nov 2.
7
Synaptic organization of visual space in primary visual cortex.初级视觉皮层中视觉空间的突触组织
Nature. 2017 Jul 27;547(7664):449-452. doi: 10.1038/nature23019. Epub 2017 Jul 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验